Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501546

RESUMO

A new drug delivery system consisting of clindamycin phosphate entrapped in acid-etched halloysite nanotubes was successfully prepared and characterized. It was then used as an antibacterial component of the multicomponent hydrogel designed as a material for bone regeneration. First, halloysite (HNT) was etched and clindamycin phosphate (CP) was entrapped in both raw and modified nanotubes, resulting in HNT-CP and EHNT-CP systems. They were characterized using SEM, TEM, TGA and FTIR; the entrapment efficiency and release of CP from both systems were also studied. EHNT-CP was then used as an antibacterial component of the two hydrogels composed of alginate, collagen and ß-TCP. The hydrogels were prepared using different crosslinking procedures but had the same composition. The morphology, porosity, degradation rate, CP release profile, cytocompatibility, antibacterial activity and ability to induce biomineralization were studied for both materials. The hydrogel obtained by a chemical crosslinking with EDC followed by the physical crosslinking with calcium ions had better properties and was shown to have potential as a bone repair material.

2.
Int J Nanomedicine ; 16: 6537-6552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602817

RESUMO

PURPOSE: Epithelial-mesenchymal (EMT) transition plays an important role in metastasis and is accompanied by an upregulation of N-cadherin expression. A new nanoparticulate system (SPION/CCh/N-cad) based on superparamagnetic iron oxide nanoparticles, stabilized with a cationic derivative of chitosan and surface-modified with anti-N-cadherin antibody, was synthetized for the effective capture of N-cadherin expressing circulating tumor cells (CTC). METHODS: The morphology, physicochemical, and magnetic properties of the system were evaluated using dynamic light scattering (DLS), fluorescence spectroscopy, Mössbauer spectroscopy, magnetometry, and fluorescence spectroscopy. Atomic force microscopy (AFM), confocal microscopy and flow cytometry were used to study the interaction of our nanoparticulate system with N-cadherin expressed in prostate cancer cell lines (PC-3 and DU 145). A purpose-built cuvette was used in the cancer cell capture experiments. RESULTS: The obtained nanoparticles were a spherical, stable colloid, and exhibited excellent magnetic properties. Biological experiments confirmed that the novel SPION/CCh/N-cad system interacts specifically with N-cadherin present on the cell surface. Preliminary studies on the magnetic capture of PC-3 cells using the obtained nanoparticles were successful. Incubation times as short as 1 minute were sufficient for the synthesized system to effectively bind to the PC-3 cells. CONCLUSION: Results obtained for our system suggest a possibility of using it to capture CTC in the flow conditions.


Assuntos
Nanopartículas , Neoplasias da Próstata , Caderinas , Linhagem Celular Tumoral , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo , Masculino
3.
Materials (Basel) ; 14(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072513

RESUMO

Halloysite, a nanoclay characterized by a unique, tubular structure, with oppositely charged interior and exterior, suitable, nanometric-range size, high biocompatibility, and low cost, is recently gaining more and more interest as an important and versatile component of various biomaterials and delivery systems of biomedical relevance. One of the most recent, significant, and intensely studied fields in which halloysite nanotubes (HNTs) found diverse applications is cancer therapy. Even though this particular direction is mentioned in several more general reviews, it has never so far been discussed in detail. In our review, we offer an extended survey of the literature on that particular aspect of the biomedical application of HNTs. While historical perspective is also given, our paper is focused on the most recent developments in this field, including controlled delivery and release of anticancer agents and nucleic acids by HNT-based systems, targeting cancer cells using HNT as a carrier, and the capture and analysis of circulating tumor cells (CTCs) with nanostructured or magnetic HNT surfaces. The overview of the most up-to-date knowledge on the HNT interactions with cancer cells is also given.

4.
ACS Omega ; 6(18): 12168-12178, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34056370

RESUMO

Nanoparticles made of amphiphilic block copolymers are commonly used in the preparation of nano-sized drug delivery systems. Poly(styrene)-block -poly(acrylic acid) (PS-PAA) copolymers have been proposed for drug delivery purposes; however, the drug loading capacity and cytotoxicity of PS-PAA nanoparticles are still not fully recognized. Herein, we investigated the accumulation of a model hydrophobic drug, curcumin, and its spatial distribution inside the PS-PAA nanoparticles. Experimental methods and atomistic molecular dynamics simulations were used to understand the molecular structure of the PS core and how curcumin molecules interact and organize within the PS matrix. The hydrophobic core of the PS-PAA nanoparticles consists of adhering individually coiled polymeric chains and is compact enough to prevent post-incorporation of curcumin. However, the drug has a good affinity for the PS matrix and can be efficiently enclosed in the PS-PAA nanoparticles at the formation stage. At low concentrations, curcumin is evenly distributed in the PS core, while its aggregates were observed above ca. 2 wt %. The nanoparticles were found to have relatively low cytotoxicity to human skin fibroblasts, and the presence of curcumin further increased their biocompatibility. Our work provides a detailed description of the interactions between a hydrophobic drug and PS-PAA nanoparticles and information on the biocompatibility of these anionic nanostructures which may be relevant to the development of amphiphilic copolymer-based drug delivery systems.

5.
Materials (Basel) ; 15(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009380

RESUMO

For the last years scientific community has witnessed a rapid development of novel types of biomaterials, which properties made them applicable in numerous fields of medicine. Although nanosilver, well-known for its antimicrobial, anti-angiogenic, anti-inflammatory and anticancer activities, as well as hyaluronic acid, a natural polysaccharide playing a vital role in the modulation of tissue repair, signal transduction, angiogenesis, cell motility and cancer metastasis, are both thoroughly described in the literature, their complexes are still a novel topic. In this review we introduce the most recent research about the synthesis, properties, and potential applications of HA-nanosilver composites. We also make an attempt to explain the variety of mechanisms involved in their action. Finally, we present biocompatible and biodegradable complexes with bactericidal activity and low cytotoxicity, which properties suggest their suitability for the prophylaxis and therapy of chronic wounds, as well as analgetic therapies, anticancer strategies and the detection of chemical substances and malignant cells. Cited studies reveal that the usage of hyaluronic acid-silver nanocomposites appears to be efficient and safe in clinical practice.

6.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352956

RESUMO

Low water solubility frequently compromises the therapeutic efficacy of drugs and other biologically active molecules. Here, we report on coacervate polysaccharide nanoparticles (CPNs) that can transport and release a model hydrophobic drug, piroxicam, to the cells in response to changes in temperature. The proposed, temperature-responsive drug delivery system is based on ionic derivatives of natural polysaccharides-curdlan and hydroxypropyl cellulose. Curdlan was modified with trimethylammonium groups, while the anionic derivative of hydroxypropyl cellulose was obtained by the introduction of styrenesulfonate groups. Thermally responsive nanoparticles of spherical shape and average hydrodynamic diameter in the range of 250-300 nm were spontaneously formed in water from the obtained ionic polysaccharides as a result of the coacervation process. Their morphology was visualized using SEM and AFM. The size and the surface charge of the obtained objects could be tailored by adjusting the polycation/polyanion ratio. Piroxicam (PIX) was effectively entrapped inside the nanoparticles. The release profile of the drug from the CPNs-PIX was found to be temperature-dependent in the range relevant for biomedical applications.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Piroxicam/administração & dosagem , Polissacarídeos/química , Algoritmos , Celulose/análogos & derivados , Celulose/química , Técnicas de Química Sintética , Microscopia de Força Atômica , Modelos Teóricos , Estrutura Molecular , Polieletrólitos/química , Análise Espectral , Temperatura
7.
Int J Biol Macromol ; 163: 1187-1195, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653373

RESUMO

Alkaline phosphatase (ALP), biomineralization promoting enzyme, was immobilized in halloysite (HAL) nanotubes and used as a bioactive component of the chitosan (CH) and chitosan-collagen (C-CH) hydrogel scaffolds for bone regeneration. The influence of HAL-ALP and collagen on the properties of the obtained materials was studied. 30 wt% of HAL-ALP increased significantly the swelling ratio of chitosan-based scaffolds. The presence of both: collagen and HAL-ALP had positive effect on the scaffolds' porosity, which was considerably higher for C-CH. The presence of HAL has improved the mechanical properties of both types of scaffolds, while the addition of 20% of collagen to the chitosan hydrogels have considerably decreased their storage modulus. Biomineralization tests showed that although mineral was formed in both CH and C-CH scaffolds with HAL-ALP, the process was more effective for collagen-containing hydrogels. Biological studies, performed using MG-63 osteoblast-like cell line showed that C-CH scaffolds, especially those after biomineralization, were a better material for cell adhesion and growth. Both types of scaffolds degraded slowly in physiological pH. C-CH scaffolds containing 30% of HAL-ALP have the highest potential as bioactive material for bone regeneration.


Assuntos
Fosfatase Alcalina/química , Materiais Biocompatíveis/química , Regeneração Óssea , Hidrogéis/química , Nanotubos/química , Alicerces Teciduais/química , Biomineralização , Fenômenos Químicos , Quitosana/química , Colágeno/metabolismo , Porosidade , Reologia
8.
Materials (Basel) ; 13(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353948

RESUMO

Pioglitazone, a popular antidiabetic drug, which was recently shown to be effective in the treatment of skin ulcers, was successfully encapsulated in polysaccharide nanoparticles and used as a bioactive component of the wound-dressing material based on modified bacterial nanocellulose. Alginate and hydroxypropyl cellulose were used as a matrix for the nanoparticulate drug-delivery system. The matrix composition and particles' size, as well as drug encapsulation efficiency and loading, were optimized. Pioglitazone hydrochloride (PIO) loaded particles were coated with chitosan introduced into the crosslinking medium, and covalently attached to the surface of bacterial nanocellulose functionalized with carboxyl groups. PIO was released from the surface of the hybrid material in a controlled manner for 5 days. Preliminary cytotoxicity studies confirmed safety of the system at PIO concentrations as high as 20 mg/mL. The obtained hybrid system may have potential application in the treatment of skin ulcers e.g., in diabetic foot.

9.
Curr Med Chem ; 27(24): 4118-4137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-29521211

RESUMO

BACKGROUND: Herpes Simplex (HSV) viruses are widely spread, highly contagious human pathogens. The statistics indicate that 50-90% of adults worldwide are seropositive for these viruses, mainly HSV-1 and HSV-2. The primary infection results in the appearance of watery blisters (cold sores) on the skin, lips, tongue, buccal mucosa or genitals. The ocular infection is the major cause of corneal blindness in the Western World. Once the HSV virus enters human body, it cannot be completely eradicated because HSV viruses are able to change into their latent form which can survive the treatment. The viron resides in trigeminal ganglia of the host, who becomes vulnerable to the reoccurrence of the disease during the whole lifespan. The neurotropic and neuro-invasive properties of HSV are responsible for neurodegenerative illnesses, such as Alzheimer's disease. Acyclovir and its analogues, being the inhibitors of the viral DNA replication, are the only approved medicines for HSV infection therapies. OBJECTIVE: The current paper presents the up-to-date overview of the important pharmacological features of acyclovir, its analogues and their delivery systems including the mechanism of action, routes of administration, absorption and metabolism, as well as side effects of the therapy. CONCLUSION: Acyclovir remains the gold standard in the treatment of herpes virus infections, mainly due to the emerging of the new delivery systems improving considerably its bioavailability. The analogues of acyclovir, especially their esters, characterized by significantly higher bioavailability and safety, may gradually replace acyclovir in selected applications.


Assuntos
Simplexvirus , Aciclovir , Antivirais , Replicação do DNA , DNA Viral , Humanos , Replicação Viral
10.
Int J Biol Macromol ; 155: 938-950, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712140

RESUMO

Novel, biocompatible, multifunctional, injectable genipin crosslinked collagen/chitosan/lysine-modified hyaluronic acid based hydrogels (ColChHAmod) were prepared in a facile, one-step procedure. The novelty of the current approach lies in the functionalization of hyaluronic acid (HA) with primary amine groups by lysine attachment, and its further use as a component of the injectable sol. The obtained derivative, HAmod, could form, upon crosslinking with genipin, covalent bonds with other components of the hydrogel network, resulting in structurally stable, better-defined hydrogels. We have demonstrated that, by adjusting HAmod content and genipin concentration, hydrogels with tunable physicochemical characteristics (swelling, wettability, tendency for enzymatic degradation) and properties adequate for the potential bone tissue regeneration can be prepared. Storage modulus measurements indicated that HAmod has positive effect on mechanical characteristics of hydrogels prepared. It was also revealed that the ColChHAmod-based hydrogels are characterized by a high porosity (85-95%). The in situ rheological measurements confirmed the injectability of the obtained hydrogels. The in vitro cell culture studies showed that the surface of all materials prepared was biocompatible, as they supported proliferation and adhesion of osteoblast-like cells followed by ALP expression. The intrinsic antibacterial activity of the hydrogels against Escherichia coli was also demonstrated in in vitro experiment.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea/efeitos dos fármacos , Quitosana , Colágeno , Ácido Hialurônico , Hidrogéis , Engenharia Tecidual , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Quitosana/química , Quitosana/farmacologia , Colágeno/química , Colágeno/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Lisina/química , Porosidade , Reologia
11.
Pharmaceutics ; 11(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766517

RESUMO

A cationic derivative of pullulan was obtained by grafting reaction and used together with dextran sulfate to form polysaccharide-based nanohydrogel cross-linked via electrostatic interactions between polyions. Due to the polycation-polyanion interactions nanohydrogel particles were formed instantly and spontaneously in water. The nanoparticles were colloidally stable and their size and surface charge could be controlled by the polycation/polyanion ratio. The morphology of the obtained particles was visualized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The resulting structures were spherical, with hydrodynamic diameters in the range of 100-150 nm. The binding constant (Ka) of a model drug, piroxicam, to the cationic pullulan (C-PUL) was determined by spectrophotometric measurements. The value of Ka was calculated according to the Benesi-Hildebrand equation to be (3.6 ± 0.2) × 103 M-1. After binding to cationic pullulan, piroxicam was effectively entrapped inside the nanohydrogel particles and released in a controlled way. The obtained system was efficiently taken up by cells and was shown to be biocompatible.

12.
Int J Nanomedicine ; 14: 7249-7262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564877

RESUMO

BACKGROUND: Curcumin is a natural polyphenol with anti-inflammatory, chemopreventive and anticancer activity. However, its high hydrophobicity and poor bioavailability limit its medical application. The development of nanocarriers for curcumin delivery is an attractive approach to overcome its low bioavailability and fast metabolism in the liver. We synthesized a blood compatible alginate-curcumin conjugate, AA-Cur, which formed colloidally stable micelles of approximately 200 nm and, as previously shown, exerted strong cytotoxicity against mouse cancer cell lines. Here we analyze in vivo toxicity and antitumor activity of AA-Cur in two different mouse tumor models. METHOD: Potential toxicity of intravenously injected AA-Cur was evaluated by: i) analyses of blood parameters (morphology and biochemistry), ii) histology, iii) DNA integrity (comet assay), and iv) cytokine profiling (flow cytometry). Antitumor activity of AA-Cur was evaluated by measuring the growth of subcutaneously inoculated colon MC38-CEA- or orthotopically injected breast 4T1 tumor cells in control mice vs mice treated with AA-Cur. RESULTS: Injections of four doses of AA-Cur did not reveal any toxicity of the conjugate, thus indicating the safety of its use. AA-Cur elicited moderate anti-tumor activity toward colon MC38-CEA or breast 4T1 carcinomas. CONCLUSION: The tested conjugate of alginate and curcumin, AA-Cur, is non-toxic and safe, but exhibits limited anticancer activity.


Assuntos
Alginatos/farmacologia , Alginatos/toxicidade , Curcumina/farmacologia , Curcumina/toxicidade , Micelas , Testes de Toxicidade , Alginatos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Materiais Biocompatíveis/química , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Citocinas/sangue , Feminino , Humanos , Hidrodinâmica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade de Órgãos
13.
Materials (Basel) ; 12(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791358

RESUMO

The recent, fast development of nanotechnology is reflected in the medical sciences. Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are an excellent example. Thanks to their superparamagnetic properties, SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible. This makes them also useful as a component of the advanced drug delivery systems. Due to their easy synthesis, biocompatibility, multifunctionality, and possibility of further surface modification with various chemical agents, SPIONs could support many fields of medicine. SPIONs have also some disadvantages, such as their high uptake by macrophages. Nevertheless, based on the ongoing studies, they seem to be very promising in oncological therapy (especially in the brain, breast, prostate, and pancreatic tumors). The main goal of our paper is, therefore, to present the basic properties of SPIONs, to discuss their current role in medicine, and to review their applications in order to inspire future developments of new, improved SPION systems.

14.
Colloids Surf B Biointerfaces ; 173: 1-8, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261344

RESUMO

Alkaline phosphatase (ALP) was sucessfully incorporated into the halloysite (HAL) nanotubes, as confirmed by FTIR-ATR and XRD analyses. The loading efficiency (LE) of ALP was found to be 13.5%, while its encapsulation efficiency (EE) was estimated to be around 27%, as determined using the Bradford test. The influence of the immobilization in HAL on the enzyme activity was measured using standard ALP activity assay. Immobilized ALP effectively induced the bomineralization process, as showed by SEM, EDS, and XRD studies. As a result, calcium phosphate was produced in the form of hydroxyapatite cauliflower-like structures, with a slight content of calcium hydroxide. Interestingly, the encapsulation of ALP guest molecules in the HAL nanotubes considerably increased its thermal stability, most probably due to the heat sink effect. The activity of HAL-bound ALP was also found to be pH-independent in the wide range of pH values (3-10) due to the amphoteric nature of the aluminum oxide lining the HAL nanotube internal surface. Due to an increased resistance to the unfavorable conditions, which are often encountered during scaffold preparation or sterilization, ALP-HAL nanocomposite material may constitute an attractive bioactive component of the scaffolds for bone regeneration.


Assuntos
Fosfatase Alcalina/química , Argila/química , Durapatita/química , Enzimas Imobilizadas/química , Nanocompostos/química , Alicerces Teciduais , Animais , Osso e Ossos/fisiologia , Fosfatos de Cálcio/química , Bovinos , Concentração de Íons de Hidrogênio , Nanocompostos/ultraestrutura , Engenharia Tecidual
15.
Materials (Basel) ; 11(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486447

RESUMO

Cancer is among the leading causes of death worldwide, thus there is a constant demand for new solutions, which may increase the effectiveness of anti-cancer therapies. We have designed and successfully obtained a novel, bifunctional, hybrid system composed of colloidally stabilized superparamagnetic iron oxide nanoparticles (SPION) and curcumin containing water-soluble conjugate with potential application in anticancer hyperthermia and as nanocarriers of curcumin. The obtained nanoparticulate system was thoroughly studied in respect to the size, morphology, surface charge, magnetic properties as well as some biological functions. The results revealed that the obtained nanoparticles, ca. 50 nm in diameter, were the agglomerates of primary particles with the magnetic, iron oxide cores of ca. 13 nm, separated by a thin layer of the applied cationic derivative of chitosan. These agglomerates were further coated with a thin layer of the sodium alginate conjugate of curcumin and the presence of both polymers was confirmed using thermogravimetry. The system was also proven to be applicable in magnetic hyperthermia induced by the oscillating magnetic field. A high specific absorption rate (SAR) of 280 [W/g] was registered. The nanoparticles were shown to be effectively uptaken by model cells. They were found also to be nontoxic in the therapeutically relevant concentration in in vitro studies. The obtained results indicate the high application potential of the new hybrid system in combination of magnetic hyperthermia with delivery of curcumin active agent.

16.
Colloids Surf B Biointerfaces ; 135: 133-142, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253533

RESUMO

Ultrathin "one-component" multilayer polymeric films for potential biomedical applications were designed based on polyvinyl alcohol,-a non-toxic, fully degradable synthetic polymer. Good uniformity of the obtained film and adequate adsorption properties of the polymeric layers were achieved by functional modification of the polymer, which involved synthesis of cationic and anionic derivatives. Synthesized polymers were characterized by FTIR, NMR spectroscopy, dynamic light scattering measurements and elemental analysis. The layer by layer assembly technique was used to build up a multilayer film and this process was followed using UV-Vis spectroscopy and ellipsometry. The morphology and thickness of the obtained multilayered film material was evaluated by atomic force microscopy (AFM). Preliminary studies on the application of the obtained multilayer film for coating of liposomal nanocarriers containing phenytoin, an antiarrhythmic drug, were performed. The coating effectively stabilizes liposomes and the effect increases with an increasing number of deposited layers until the polymeric film reaches the optimal thickness. The obtained release profiles suggest that bilayer-coated liposomes release phenytoin less rapidly than uncoated ones. The cytotoxicity studies performed for all obtained nanocarriers confirmed that none of them has negative effect on cell viability. All of the performed experiments suggest that liposomes coated with ultrathin film obtained from PVA derivatives can be attractive drug nanocarriers.


Assuntos
Antiarrítmicos/administração & dosagem , Fenitoína/administração & dosagem , Álcool de Polivinil/química , Adulto , Antiarrítmicos/química , Antiarrítmicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lipossomos , Microscopia de Força Atômica , Fenitoína/química , Fenitoína/toxicidade , Solubilidade
17.
Life Sci ; 96(1-2): 1-6, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24373835

RESUMO

Glucocorticoids (GCs) are broadly used in the treatment of inflammation and in suppressing hyperactivity of the immune system expressed in allergies, asthma, autoimmune diseases and sepsis. They are pleiotropic in nature, showing a wide range of diverse effects, including those which are harmful for the organism. Dexamethasone (DEX) is one of the most frequently used GCs and is considered as one of the safest. Still serious side-effects have been observed for this drug, mostly due to its hydrophobicity and low bioavailability. The potentially promising polymeric carrier systems to deliver DEX effectively are revised.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dexametasona/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Polímeros/administração & dosagem , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Dexametasona/química , Dexametasona/farmacocinética , Oftalmopatias/tratamento farmacológico , Oftalmopatias/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Polímeros/química , Polímeros/farmacocinética
18.
Colloids Surf B Biointerfaces ; 109: 307-16, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23668985

RESUMO

Stable vesicles for efficient curcumin encapsulation, delivery and controlled release have been obtained by coating of liposomes with thin layer of newly synthesized chitosan derivatives. Three different derivatives of chitosan were obtained and studied: the cationic (by introduction of the stable, quaternary ammonium groups), the hydrophobic (by attachment of N-dodecyl groups) and cationic-hydrophobic one (containing both quaternary ammonium and N-dodecyl groups). Zeta potential measurements confirmed effective coating of liposomes with all these chitosan derivatives. The liposomes coated with cationic-hydrophobic chitosan derivative are the most promising curcumin carriers; they can easily penetrate cell membrane and release curcumin in a controlled manner. Biological studies indicated that such systems are non-toxic for murine fibroblasts (NIH3T3) while toxic toward murine melanoma (B16F10) cell line.


Assuntos
Antineoplásicos/farmacologia , Quitosana/análogos & derivados , Quitosana/química , Curcumina/farmacologia , Lipossomos/química , Animais , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/toxicidade , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície
19.
Carbohydr Polym ; 96(1): 211-7, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23688472

RESUMO

Novel polyelectrolytes were obtained by grafting N-isopropylacrylamide (NIPAM) on the ι-carrageenan (CAR) chain. Two polymers with different grafting degrees were synthesized. The polymers were found to show the lower critical solution temperature (LCST) close to that of PNIPAM. The LCST values were dependent on the concentration of salt and cationic surfactant. The interactions of CAR-graft-PNIPAM with a model cationic surfactant-dodecyltrimethyl ammonium chloride (DTAC) in water and 0.15M NaCl were studied. It was found that both ι-carrageenan and CAR-graft-PNIPAM polymers interact with DTAC. The presence of CAR-graft-PNIPAM in the solution of DTAC induces formation of surfactant aggregates at the critical aggregation concentration much lower than the cmc of the surfactant. Cac increased with ionic strength. The values of cac for CAR-graft-PNIPAM - DTAC system and standard free enthalpy changes attributed to the complexation process were determined. The results obtained for CAR-graft-PNIPAM were compared with these for the non-modified ι-carrageenan. The surfactant interactions with non-modified and grafted polymers were found to be different in nature.


Assuntos
Resinas Acrílicas/química , Carragenina/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Temperatura Alta , Concentração Osmolar
20.
Antiviral Res ; 97(2): 112-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23201315

RESUMO

The human coronavirus NL63 is generally classified as a common cold pathogen, though the infection may also result in severe lower respiratory tract diseases, especially in children, patients with underlying disease, and elderly. It has been previously shown that HCoV-NL63 is also one of the most important causes of croup in children. In the current manuscript we developed a set of polymer-based compounds showing prominent anticoronaviral activity. Polymers have been recently considered as promising alternatives to small molecule inhibitors, due to their intrinsic antimicrobial properties and ability to serve as matrices for antimicrobial compounds. Most of the antimicrobial polymers show antibacterial properties, while those with antiviral activity are much less frequent. A cationically modified chitosan derivative, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and hydrophobically-modified HTCC were shown to be potent inhibitors of HCoV-NL63 replication. Furthermore, both compounds showed prominent activity against murine hepatitis virus, suggesting broader anticoronaviral activity.


Assuntos
Antivirais/farmacologia , Quitosana/farmacologia , Coronavirus Humano NL63/efeitos dos fármacos , Animais , Antivirais/química , Cátions/química , Cátions/farmacologia , Linhagem Celular , Quitosana/química , Coronavirus Humano NL63/fisiologia , Humanos , Macaca mulatta , Vírus da Hepatite Murina/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA