Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 4(6): 100639, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37322867

RESUMO

Jasmonates (JAs) are plant hormones with crucial roles in development and stress resilience. They activate MYC transcription factors by mediating the proteolysis of MYC inhibitors called JAZ proteins. In the absence of JA, JAZ proteins bind and inhibit MYC through the assembly of MYC-JAZ-Novel Interactor of JAZ (NINJA)-TPL repressor complexes. However, JAZ and NINJA are predicted to be largely intrinsically unstructured, which has precluded their experimental structure determination. Through a combination of biochemical, mutational, and biophysical analyses and AlphaFold-derived ColabFold modeling, we characterized JAZ-JAZ and JAZ-NINJA interactions and generated models with detailed, high-confidence domain interfaces. We demonstrate that JAZ, NINJA, and MYC interface domains are dynamic in isolation and become stabilized in a stepwise order upon complex assembly. By contrast, most JAZ and NINJA regions outside of the interfaces remain highly dynamic and cannot be modeled in a single conformation. Our data indicate that the small JAZ Zinc finger expressed in Inflorescence Meristem (ZIM) motif mediates JAZ-JAZ and JAZ-NINJA interactions through separate surfaces, and our data further suggest that NINJA modulates JAZ dimerization. This study advances our understanding of JA signaling by providing insights into the dynamics, interactions, and structure of the JAZ-NINJA core of the JA repressor complex.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Ciclopentanos/metabolismo
2.
Clin Chim Acta ; 448: 206-10, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26164385

RESUMO

BACKGROUND: Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC). METHODS: Thioredoxin fusion VCA p18 (VCA-Trx) and IBs of VCA p18 without fusion tags (VCA-IBs) were purified from E. coli. The diagnostic performances of IgG/VCA-IBs, IgG/VCA-Denat-IBs (using VCA-IBs coated in 8mol/l urea), IgG/VCA-Trx, and IgG/VCA-Peptide assays were compared by screening 100 NPC case-control pairs. RESULTS: The IgG/VCA-Denat-IBs assay showed the best area under the receiver operating characteristic curve (AUC: 0.802; p<0.05), while the AUCs for the IgG/VCA-IBs, IgG/VCA-Trx, and IgG/VCA-Peptide assays were comparable (AUC: 0.740, 0.727, and 0.741, respectively). CONCLUSION: We improved the diagnostic performance of the ELISA significantly using IBs of recombinant VCA p18.


Assuntos
Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática , Proteínas Imobilizadas/imunologia , Corpos de Inclusão Viral/imunologia , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/virologia , Antígenos Virais/química , Proteínas do Capsídeo/química , Humanos , Proteínas Imobilizadas/química , Corpos de Inclusão Viral/química , Neoplasias Nasofaríngeas/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA