Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2862, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536551

RESUMO

In the Fe-doped GaN phase-separated magnetic semiconductor Ga[Formula: see text]FeN, the presence of embedded [Formula: see text]-[Formula: see text]N nanocrystals determines the magnetic properties of the system. Here, through a combination of anomalous X-ray diffraction and diffraction anomalous fine structure, the local structure of Ga in self-assembled face-centered cubic (fcc) [Formula: see text]-[Formula: see text]N nanocrystals embedded in wurtzite GaN thin layers is investigated in order to shed light onto the correlation between fabrication parameters, local structural arrangement and overall magnetic properties of the material system. It is found, that by adjusting the growth parameters and thus, the crystallographic surroundings, the Ga atoms can be induced to incorporate into 3c positions at the faces of the fcc crystal lattice, reaching a maximum occupancy of 30%. The magnetic response of the embedded nanocrystals is ferromagnetic with Curie temperature increasing from 450 to 500 K with the Ga occupation. These results demonstrate the outstanding potential of the employed experimental protocol for unravelling the local structure of magnetic multi-phase systems, even when embedded in a matrix containing the same element under investigation.

2.
RSC Adv ; 11(37): 23122-23135, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480441

RESUMO

Reversible solid-state hydrogen storage is one of the key technologies toward pollutant-free and sustainable energy conversion. The composite system LiBH4-MgH2 can reversibly store hydrogen with a gravimetric capacity of 13 wt%. However, its dehydrogenation/hydrogenation kinetics is extremely sluggish (∼40 h) which hinders its usage for commercial applications. In this work, the kinetics of this composite system is significantly enhanced (∼96%) by adding a small amount of NbF5. The catalytic effect of NbF5 on the dehydrogenation/hydrogenation process of LiBH4-MgH2 is systematically investigated using a broad range of experimental techniques such as in situ synchrotron radiation X-ray powder diffraction (in situ SR-XPD), X-ray absorption spectroscopy (XAS), anomalous small angle X-ray scattering (ASAXS), and ultra/small-angle neutron scattering (USANS/SANS). The obtained results are utilized to develop a model that explains the catalytic function of NbF5 in hydrogen release and uptake in the LiBH4-MgH2 composite system.

3.
Inorg Chem ; 57(6): 3197-3205, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29512391

RESUMO

The crystal structure of a mixed amide-imide phase, RbMgND2ND, has been solved in the orthorhombic space group Pnma ( a = 9.55256(31), b = 3.70772(11) and c = 10.08308(32) Å). A new metal amide-hydride solid solution, Rb(NH2) xH(1- x), has been isolated and characterized in the entire compositional range. The profound analogies, as well as the subtle differences, with the crystal chemistry of KMgND2ND and K(NH2) xH1- x are thoroughly discussed. This approach suggests that the comparable performances obtained using K- and Rb-based additives for the Mg(NH2)2- 2LiH and 2LiN H2-MgH2 hydrogen storage systems are likely to depend on the structural similarities of possible reaction products and intermediates.

4.
Phys Chem Chem Phys ; 19(47): 32105-32115, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29182181

RESUMO

The 6Mg(NH2)2-9LiH-LiBH4 composite system has a maximum reversible hydrogen content of 4.2 wt% and a predicted dehydrogenation temperature of about 64 °C at 1 bar of H2. However, the existence of severe kinetic barriers precludes the occurrence of de/re-hydrogenation processes at such a low temperature (H. Cao, G. Wu, Y. Zhang, Z. Xiong, J. Qiu and P. Chen, J. Mater. Chem. A, 2014, 2, 15816-15822). In this work, Li3N and YCl3 have been chosen as co-additives for this system. These additives increase the hydrogen storage capacity and hasten the de/re-hydrogenation kinetics: a hydrogen uptake of 4.2 wt% of H2 was achieved in only 8 min under isothermal conditions at 180 °C and 85 bar of H2 pressure. The re-hydrogenation temperature, necessary for a complete absorption process, can be lowered below 90 °C by increasing the H2 pressure above 185 bar. Moreover, the results indicate that the hydrogenation capacity and absorption kinetics can be maintained roughly constant over several cycles. Low operating temperatures, together with fast absorption kinetics and good reversibility, make this system a promising on-board hydrogen storage material. The reasons for the improved de/re-hydrogenation properties are thoroughly investigated and discussed.

5.
Chem Commun (Camb) ; 52(79): 11760-11763, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27722247

RESUMO

We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2- ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

6.
Phys Chem Chem Phys ; 17(41): 27328-42, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26418174

RESUMO

Designing safe, compact and high capacity hydrogen storage systems is the key step towards introducing a pollutant free hydrogen technology into a broad field of applications. Due to the chemical bonds of hydrogen-metal atoms, metal hydrides provide high energy density in safe hydrogen storage media. Reactive hydride composites (RHCs) are a promising class of high capacity solid state hydrogen storage systems. Ca(BH4)2 + MgH2 with a hydrogen content of 8.4 wt% is one of the most promising members of the RHCs. However, its relatively high desorption temperature of ∼350 °C is a major drawback to meeting the requirements for practical application. In this work, by using NbF5 as an additive, the dehydrogenation temperature of this RHC was significantly decreased. To elucidate the role of NbF5 in enhancing the desorption properties of the Ca(BH4)2 + MgH2 (Ca-RHC), a comprehensive investigation was carried out via manometric measurements, mass spectrometry, Differential Scanning Calorimetry (DSC), in situ Synchrotron Radiation-Powder X-ray Diffraction (SR-PXD), X-ray Absorption Spectroscopy (XAS), Anomalous Small-Angle X-ray Scattering (ASAXS), Scanning and Transmission Electron Microscopy (SEM, TEM) and Nuclear Magnetic Resonance (NMR) techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...