Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 13(3): tfae080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799411

RESUMO

The protein, Nuclear factor-E2-related factor 2 (Nrf2), is a transitory protein that acts as a transcription factor and is involved in the regulation of many cytoprotective genes linked to xenobiotic metabolism and antioxidant responses. Based on the existing clinical and experimental data, it can be inferred that neurodegenerative diseases are characterized by an excessive presence of markers of oxidative stress (OS) and a reduced presence of antioxidant defense systems in both the brain and peripheral tissues. The presence of imbalances in the homeostasis between oxidants and antioxidants has been recognized as a substantial factor in the pathogenesis of neurodegenerative disorders. The dysregulations include several cellular processes such as mitochondrial failure, protein misfolding, and neuroinflammation. These dysregulations all contribute to the disruption of proteostasis in neuronal cells, leading to their eventual mortality. A noteworthy component of Nrf2, as shown by recent research undertaken over the last decade, is to its role in the development of resistance to OS. Nrf2 plays a pivotal role in regulating systems that defend against OS. Extant research offers substantiation for the protective and defensive roles of Nrf2 in the context of neurodegenerative diseases. The purpose of this study is to provide a comprehensive analysis of the influence of Nrf2 on OS and its function in regulating antioxidant defense systems within the realm of neurodegenerative diseases. Furthermore, we evaluate the most recent academic inquiries and empirical evidence about the beneficial and potential role of certain Nrf2 activator compounds within the realm of therapeutic interventions.

2.
Cell Tissue Bank ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725732

RESUMO

After an injury, peripheral nervous system neurons have the potential to rebuild their axons by generating a complicated activation response. Signals from the damaged axon are required for this genetic transition to occur. Schwann cells (SCs) near a damaged nerve's distal stump also play a role in the local modulation of axonal programs, not only via cell-to-cell contacts but also through secreted signals (the secretome). The secretome is made up of all the proteins that the cell produces, such as cytokines, growth factors, and extracellular vesicles. The released vesicles may carry signaling proteins as well as coding and regulatory RNAs, allowing for multilayer communication. The secretome of SCs is now well understood as being critical for both orchestrating Wallerian degeneration and maintaining axonal regeneration. As a consequence, secretome has emerged as a feasible tissue regeneration alternative to cell therapy. Separate SC secretome components have been used extensively in the lab to promote peripheral nerve regeneration after injury. However, in neurological therapies, the secretome generated by mesenchymal (MSC) or other derived stem cells has been the most often used. In fact, the advantages of cell treatment have been connected to the release of bioactive chemicals and extracellular vesicles, which make up MSCs' secretome.

3.
Acta Histochem ; 124(1): 151832, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952259

RESUMO

BACKGROUND: Astaxanthin is a xanthophyll pigment found in algae and marine animals, having strong anti-oxidative, anti-tumoral, and anti-inflammatory effects. Additionally, melatonin has shown inhibitory effects on the growth of human breast cancer cells. The aim of the present study was to evaluate the effect of astaxanthin and the combined effects of astaxanthin and melatonin on breast cancer cells and the non-tumoral breast cell line. MATERIALS AND METHODS: The human breast cancer cell lines, T47D and MDA-MB-231, and non-tumorigenic cell line MCF 10A were treated and compared to astaxanthin, melatonin, and co-administration of these two compounds. Cell viability, apoptosis induction, Bcl-2 protein expression, and DNA damage were measured by MTT assay, acridine orange/ethidium bromide (AO/EB) staining, immunocytochemistry, and comet assay. RESULTS: Astaxanthin at lower doses than melatonin reduced cell viability and Bcl2 expression, induced apoptosis and DNA damage in MDA-MB-231 and T47D. Meanwhile, the effects of astaxanthin on cell cytotoxicity, apoptosis, and DNA damage in MCF10A cells are insignificant compared to MDA-MB-231 and T47D. Moreover, the results indicated that astaxanthin in T47D cells caused more cell death compared to MDA-MB-231 cells. Astaxanthin induced cell death on breast cancer cells and without cell cytotoxicity for non-cancerous cells. CONCLUSION: Furthermore, the presence of astaxanthin increased the function of melatonin-induced cell death in breast cancer cells.


Assuntos
Neoplasias da Mama , Melatonina , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Feminino , Humanos , Melatonina/farmacologia , Xantofilas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA