Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 210: 1-10, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35149005

RESUMO

Triple-negative breast cancer has an aggressive clinical course and its treatment has been challenging due to high metastatic risk. Molecular targets have been sought to provide better strategies for this type of cancer. Integrins are cell adhesion receptors involved in tumor progression and α2ß1 integrin, a collagen receptor, has a key role in breast metastasis. Disintegrins, a family of proteins from snake venoms, selectively block the function of integrin receptors. Alternagin-C (ALT-C), a disintegrin-like protein purified from Bothrops alternatus venom, binds to α2ß1 integrin, attenuating inflammation and angiogenesis, and decreasing metalloprotease levels in the tumor microenvironment, which suggests anti-metastatic effects. However, its mechanisms of action in metastatic tumor cells have not been fully explored. Here, we investigated ALT-C effects in a triple-negative breast cancer cell line (MDA-MB-231) to elucidate how α2ß1 integrin affects cellular adhesion, migration and gene expression related to metastasis. We observed that ALT-C attenuated cell adhesion of MDA-MB-231 cells to collagen I. α2 integrin subunit silencing in MDA-MB-231 cells did not inhibit cell adhesion and migration to collagen I, indicating that other integrins play a crucial role in cell motility for this cell line. ALT-C also stimulated the metastasis suppressor 1 (MTSS1) expression and decreased metalloproteases MMP9 and MMP2. Therefore, we suggest that ALT-C contributes to impair metastasis, preventing extracellular matrix degradation and tumor attachment to collagen I, increasing MTSS1. This study is the first to elucidate the anti-metastatic mechanism involving a disintegrin-like protein from snake venom targeting α2ß1 integrin and stimulating a metastasis suppressor.


Assuntos
Desintegrinas , Integrina alfa2beta1 , Proteínas dos Microfilamentos , Proteínas de Neoplasias , Neoplasias de Mama Triplo Negativas , Adesão Celular/efeitos dos fármacos , Colágeno/metabolismo , Desintegrinas/farmacologia , Humanos , Integrina alfa2beta1/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ligantes , Proteínas dos Microfilamentos/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
2.
Toxicon X ; 7: 100052, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776002

RESUMO

Snake venom metalloproteinases (SVMPs) represent a diverse group of multi-domain proteins with several biological activities such as the ability to induce hemorrhage, proteolytic degradation of fibrinogen and fibrin, induction of apoptosis and inhibition of platelet aggregation. Due to these activities, SVMPs are responsible for many of the well-known pathological phenotypes in snake envenomations caused particularly by species from the Viperidae family and the Crotalinae subfamily. These proteins have been classified based on their size and domain structure into P-I, P-II and P-III classes. Comparatively, members of the P-I SVMPs possess the simplest structures, formed by the catalytic metalloproteinase domain only; the P-II SVMPs are moderately more complex, having the canonical disintegrin domain in addition to the metalloproteinase domain; members of the P-III class are more structurally varied, comprising the metalloproteinase, disintegrin-like, and cysteine-rich domains. Proteolytic cleavage, repeated domain loss and presence of other ancillary domains are responsible for structural diversities in the P-III class. However, studies continue to unveil the relationship between the structure and function of these proteins. In this review, we recovered evidences from literature on the structural peculiarities and functional classification of Snake Venom Metalloproteinases. In addition, we reflect on diversities that exist among each class while taking into account specific and up-to-date class-based activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA