Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 253: 112887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460430

RESUMO

BACKGROUND: The underlying molecular mechanisms that determine the biological effects of UVB radiation exposure on human skin are still only partially comprehended. OBJECTIVES: Our goal is to examine the human skin transcriptome and related molecular mechanisms following a single exposure to UVB in the morning versus evening. METHODS: We exposed 20 volunteer females to four-fold standard erythema doses (SED4) of narrow-band UVB (309-313 nm) in the morning or evening and studied skin transcriptome 24 h after the exposure. We performed enrichment analyses of gene pathways, predicted changes in skin cell composition using cellular deconvolution, and correlated cell proportions with gene expression. RESULTS: In the skin transcriptome, UVB exposure yielded 1384 differentially expressed genes (DEGs) in the morning and 1295 DEGs in the evening, of which the most statistically significant DEGs enhanced proteasome and spliceosome pathways. Unexposed control samples showed difference by 321 DEGs in the morning vs evening, which was related to differences in genes associated with the circadian rhythm. After the UVB exposure, the fraction of proinflammatory M1 macrophages was significantly increased at both timepoints, and this increase was positively correlated with pathways on Myc targets and mTORC1 signaling. In the evening, the skin clinical erythema was more severe and had stronger positive correlation with the number of M1 macrophages than in the morning after UVB exposure. The fractions of myeloid and plasmacytoid dendritic cells and CD8 T cells were significantly decreased in the morning but not in the evening. CONCLUSIONS: NB-UVB-exposure causes changes in skin transcriptome, inhibiting cell division, and promoting proteasome activity and repair responses, both in the morning and in the evening. Inflammatory M1 macrophages may drive the UV-induced skin responses by exacerbating inflammation and erythema. These findings highlight how the same UVB exposure influences skin responses differently in morning versus evening and presents a possible explanation to the differences in gene expression in the skin after UVB irradiation at these two timepoints.


Assuntos
Complexo de Endopeptidases do Proteassoma , Pele , Feminino , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Eritema/etiologia , Macrófagos , Expressão Gênica
2.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958613

RESUMO

Scratching damages upper layers of the skin, breaks this first line of immune defence, and leads to inflammation response, which often also modifies the microbiota of the skin. Although the healing of incision wounds is well-described, there are fewer studies on superficial wounds. We used a simulated model of skin scratching to study changes in the host transcriptome, skin microbiota, and their relationship. Additionally, we examined the effect of nanosized ZnO, TiO2, and Ag on both intact and damaged skin. At 24 h after exposure, the number of neutrophils was increased, 396 genes were differentially expressed, and microbiota compositions changed between scratched and intact control skin. At 7 d, the skin was still colonised by gut-associated microbes, including Lachnospiraceae, present in the cage environment, while the transcriptomic responses decreased. To sum up, the nanomaterial exposures reduced the relative abundance of cutaneous microbes on healthy skin, but the effect of scratching was more significant for the transcriptome than the nanomaterial exposure both at 24 h and 7 d. We conclude that superficial skin scratching induces inflammatory cell accumulation and changes in gene expression especially at 24 h, while the changes in the microbiota last at least 7 days.


Assuntos
Microbiota , Pele , Camundongos , Animais , Pele/metabolismo , Cicatrização , Administração Cutânea , Neutrófilos
3.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239856

RESUMO

Lifestyle modifications, including increased physical activity and exercise, are recommended for non-alcoholic fatty liver disease (NAFLD). Inflamed adipose tissue (AT) contributes to the progression and development of NAFLD and oxylipins such as hydroxyeicosatetraenoic acids (HETE), hydroxydocosahexanenoic acids (HDHA), prostaglandins (PEG2), and isoprostanoids (IsoP), which all may play a role in AT homeostasis and inflammation. To investigate the role of exercise without weight loss on AT and plasma oxylipin concentrations in NAFLD subjects, we conducted a 12-week randomized controlled exercise intervention. Plasma samples from 39 subjects and abdominal subcutaneous AT biopsy samples from 19 subjects were collected both at the beginning and the end of the exercise intervention. In the AT of women, a significant reduction of gene expression of hemoglobin subunits (HBB, HBA1, HBA2) was observed within the intervention group during the 12-week intervention. Their expression levels were negatively associated with VO2max and maxW. In addition, pathways involved in adipocyte morphology alterations significantly increased, whereas pathways in fat metabolism, branched-chain amino acids degradation, and oxidative phosphorylation were suppressed in the intervention group (p < 0.05). Compared to the control group, in the intervention group, the ribosome pathway was activated, but lysosome, oxidative phosphorylation, and pathways of AT modification were suppressed (p < 0.05). Most of the oxylipins (HETE, HDHA, PEG2, and IsoP) in plasma did not change during the intervention compared to the control group. 15-F2t-IsoP significantly increased in the intervention group compared to the control group (p = 0.014). However, this oxylipin could not be detected in all samples. Exercise intervention without weight loss may influence the AT morphology and fat metabolism at the gene expression level in female NAFLD subjects.


Assuntos
Treinamento Intervalado de Alta Intensidade , Hepatopatia Gordurosa não Alcoólica , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/complicações , Tecido Adiposo/metabolismo , Redução de Peso , Expressão Gênica , Fígado/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982257

RESUMO

Consumers and manufacturers are exposed to nanosized zinc oxide (nZnO) and silver particles (nAg) via airways, but their biological effects are still not fully elucidated. To understand the immune effects, we exposed mice to 2, 10, or 50 µg of nZnO or nAg by oropharyngeal aspiration and analyzed the global gene expression profiles and immunopathological changes in the lungs after 1, 7, or 28 days. Our results show that the kinetics of responses varied in the lungs. Exposure to nZnO resulted in the highest accumulation of F4/80- and CD3-positive cells, and the largest number of differentially expressed genes (DEGs) were identified after day 1, while exposure to nAg caused peak responses at day 7. Additionally, nZnO mainly activated the innate immune responses leading to acute inflammation, whereas the nAg activated both innate and adaptive immune pathways, with long-lasting effects. This kinetic-profiling study provides an important data source to understand the cellular and molecular processes underlying nZnO- and nAg-induced transcriptomic changes, which lead to the characterization of the corresponding biological and toxicological effects of nZnO and nAg in the lungs. These findings could improve science-based hazard and risk assessment and the development of safe applications of engineered nanomaterials (ENMs), e.g., in biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Camundongos , Animais , Óxido de Zinco/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Transcriptoma , Pulmão
5.
Front Allergy ; 4: 1152927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998574

RESUMO

Contact with natural environments enriches the human microbiome, promotes immune balance and protects against allergies and inflammatory disorders. In Finland, the allergy & asthma epidemic became slowly visible in mid 1960s. After the World War II, Karelia was split into Finnish and Soviet Union (now Russia) territories. This led to more marked environmental and lifestyle changes in the Finnish compared with Russian Karelia. The Karelia Allergy Study 2002-2022 showed that allergic conditions were much more common on the Finnish side. The Russians had richer gene-microbe network and interaction than the Finns, which associated with better balanced immune regulatory circuits and lower allergy prevalence. In the Finnish adolescents, a biodiverse natural environment around the homes associated with lower occurrence of allergies. Overall, the plausible explanation of the allergy disparity was the prominent change in environment and lifestyle in the Finnish Karelia from 1940s to 1980s. The nationwide Finnish Allergy Programme 2008-2018 implemented the biodiversity hypothesis into practice by endorsing immune tolerance, nature contacts, and allergy health with favorable results. A regional health and environment programme, Nature Step to Health 2022-2032, has been initiated in the City of Lahti, EU Green Capital 2021. The programme integrates prevention of chronic diseases (asthma, diabetes, obesity, depression), nature loss, and climate crisis in the spirit of Planetary Health. Allergic diseases exemplify inappropriate immunological responses to natural environment. Successful management of the epidemics of allergy and other non-communicable diseases may pave the way to improve human and environmental health.

7.
Allergy ; 78(2): 454-463, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35969113

RESUMO

BACKGROUND: Milk oral immunotherapy (OIT) may increase the amount of milk protein that can be ingested without triggering an allergic reaction. It is important to understand why some patients benefit from the treatment while others do not. OBJECTIVE: The aim was to define the differences in the milk allergen component-specific (casein, α-lactalbumin, ß-lactoglobulin) immunoglobulin (sIg [sIgE, sIgG4, and sIgA]) levels relative to the long-term outcomes of milk OIT. METHODS: In this long-term, open-label follow-up study, 286 children started milk OIT between 2005 and 2015. Follow-up data were collected at two points: the post-buildup phase and long term (range 1-11 years, median 6 years). Comparisons of sIg levels were made among three outcome groups of self-reported long-term milk consumption (high-milk dose, low-milk dose, and avoidance). RESULTS: A total of 168 (59%) of the 286 patients on OIT participated. Most patients (57%) were in the high-dose group; here, 80% of these patients had a baseline casein sIgE value less than 28 kUA/L, they had the lowest casein sIgE levels at all time (p < .001), their casein sIgG4/IgE levels increased, and long-term casein sIgA was highest compared with the low-dose and avoidance groups (p = .02). Low-milk dose group had the highest casein sIgG4/IgE levels in long term (p = .002). CONCLUSION: The baseline Ig profiles and responses to milk OIT differed depending on long-term milk consumption. Lower casein sIgE levels were associated with better outcome. Milk casein sIgA differed in the long term among high-milk consumers.


Assuntos
Caseínas , Hipersensibilidade a Leite , Humanos , Criança , Seguimentos , Finlândia , Imunoglobulina E , Alérgenos , Imunoterapia , Hipersensibilidade a Leite/terapia , Hipersensibilidade a Leite/etiologia , Administração Oral , Imunoglobulina A Secretora , Dessensibilização Imunológica/efeitos adversos
8.
PLoS One ; 17(10): e0276071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264944

RESUMO

Contact allergy is a common skin allergy, which can be studied utilising contact hypersensitivity (CHS) animal model. However, it is not clear, whether CHS is a suitable model to investigate skin microbiota interactions. We characterised the effect of contact dermatitis on the skin microbiota and studied the biological effects of oxazolone (OXA) -induced inflammation on skin thickness, immune cell numbers and changes of the microbiota in CHS mouse model (n = 72) for 28 days. Through 16S rRNA gene sequencing we defined the composition of bacterial communities and associations of bacteria with inflammation. We observed that the vehicle solution of acetone and olive oil induced bacterial community changes on day 1, and OXA-induced changes were observed mainly on day 7. Many of the notably enriched bacteria present in the OXA-challenged positive group represented the genus Faecalibaculum which were most likely derived from the cage environment. Additionally, skin inflammation correlated negatively with Streptococcus, which is considered a native skin bacterium, and positively with Muribacter muris, which is typical in oral environment. Skin inflammation favoured colonisation of cage-derived faecal bacteria, and additionally mouse grooming transferred oral bacteria on the skin. Due to the observed changes, we conclude that CHS model could be used for certain skin microbiome-related research set-ups. However, since vehicle exposure can alter the skin microbiome as such, future studies should include considerations such as careful control sampling and statistical tests to account for potential confounding factors.


Assuntos
Dermatite Alérgica de Contato , Microbiota , Camundongos , Animais , Oxazolona , RNA Ribossômico 16S/genética , Azeite de Oliva , Acetona , Modelos Animais de Doenças , Inflamação , Bactérias
9.
Food Chem Toxicol ; 169: 113368, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087619

RESUMO

Silver (nAg) and titanium dioxide (nTiO2) nanoparticles improve texture, flavour or anti-microbial properties of various food products and packaging materials. Despite their increased oral exposure, their potential toxicities in the dysfunctional intestine are unclear. Here, the effects of ingested nAg or nTiO2 on inflamed colon were revealed in a mouse model of chemical-induced acute ulcerative colitis. Mice (eight/group) were exposed to nAg or nTiO2 by oral gavage for 10 consecutive days. We characterized disease phenotypes, histology, and alterations in colonic transcriptome (RNA sequencing) and gut microbiome (16S sequencing). Oral exposure to nAg caused only minor changes in phenotypic hallmarks of colitic mice but induced extensive responses in gene expression enriching processes of apoptotic cell death and RNA metabolism. Instead, ingested nTiO2 yielded shorter colon, aggravated epithelial hyperplasia and deeper infiltration of inflammatory cells. Both nanoparticles significantly changed the gut microbiota composition, resulting in loss of diversity and increase of potential pathobionts. They also increased colonic mucus and abundance of Akkermansia muciniphila. Overall, nAg and nTiO2 induce dissimilar immunotoxicological changes at the molecular and microbiome level in the context of colon inflammation. The results provide valuable information for evaluation of utilizing metallic nanoparticles in food products for the vulnerable population.


Assuntos
Colite Ulcerativa , Colo , Microbioma Gastrointestinal , Nanopartículas Metálicas , Prata , Titânio , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colo/efeitos dos fármacos , Colo/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , RNA/metabolismo , Prata/toxicidade , Titânio/toxicidade , Transcriptoma , Nanopartículas Metálicas/toxicidade
10.
Front Allergy ; 3: 878862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769561

RESUMO

Background: Previously, we investigated skin microbiota and blood cell gene expression in Finnish and Russian teenagers with contrasting incidence of allergic conditions. The microbiota and transcriptomic signatures were distinctly different, with high Acinetobacter abundance and suppression of genes regulating innate immune response in healthy subjects. Objective: Here, we investigated long non-coding RNA (lncRNA) expression profiles of blood mononuclear cells (PBMC) from healthy and allergic subjects, to identify lncRNAs that act at the interphase of microbiome-mediated immune homeostasis in allergy/asthma. Methods: Genome-wide co-expression network analyses of blood cell lncRNA/mRNA expression was integrated with skin microbiota profiles of Finnish (69) and Russian (75) subjects. Selected lncRNAs were validated by stimulation of cohort-derived PBMCs and a macrophage cell model with birch pollen allergen (Betv1) or lipopolysaccharide, respectively. Results: Finnish and Russian PBMCs were differentiated by 3,818 lncRNA transcripts. In the Finnish subjects with high prevalence of allergy and asthma, a subset of 37 downregulated lncRNAs (including, FAM155A-IT1 and LOC400958) were identified. They were part of a co-expression network with 20 genes known to be related to asthma and allergic rhinitis (R > 0.95). Incidentally, all these 20 genes were also components of pathways corresponding to cellular response to bacterium. The Finnish and Russian samples were also differentiated by the abundance of 176 bacterial OTU (operational taxonomic units). The subset of 37 lncRNAs, associated with allergy, was most correlated with the abundance of Acinetobacter (R > +0.5), Jeotgalicoccus (R > +0.5), Corynebacterium (R < -0.5) and Micrococcus (R < -0.5). Conclusion: In Finnish and Russian teenagers with contrasting allergy and asthma prevalence, epigenetic differences in lncRNA expression appear to be important components of the underlying microbiota-immune interactions. Unraveling the functions of the 37 differing lncRNAs may be the key to understanding microbiome-immune crosstalk, and to develop clinically relevant biomarkers.

11.
Nanomaterials (Basel) ; 12(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35457956

RESUMO

Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) have attracted a great deal of attention due to their excellent electrical, optical, whitening, UV-adsorbing and bactericidal properties. The extensive production and utilization of these NPs increases their chances of being released into the environment and conferring unintended biological effects upon exposure. With the increasingly prevalent use of the omics technique, new data are burgeoning which provide a global view on the overall changes induced by exposures to NPs. In this review, we provide an account of the biological effects of ZnO and TiO2 NPs arising from transcriptomics in in vivo and in vitro studies. In addition to studies on humans and mice, we also describe findings on ecotoxicology-related species, such as Danio rerio (zebrafish), Caenorhabditis elegans (nematode) or Arabidopsis thaliana (thale cress). Based on evidence from transcriptomics studies, we discuss particle-induced biological effects, including cytotoxicity, developmental alterations and immune responses, that are dependent on both material-intrinsic and acquired/transformed properties. This review seeks to provide a holistic insight into the global changes induced by ZnO and TiO2 NPs pertinent to human and ecotoxicology.

12.
Clin Exp Allergy ; 52(8): 929-941, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35147263

RESUMO

BACKGROUND: In allergic patients, clinical symptoms caused by pollen remind of symptoms triggered by viral respiratory infections, which are also the main cause of asthmatic exacerbations. In patients sensitized to birch pollen, Bet v 1 is the major symptom-causing allergen. Immune mechanisms driving Bet v 1-related responses of human blood cells have not been fully characterized. OBJECTIVE: To characterize the immune response to Bet v 1 in peripheral blood in patients allergic to birch pollen. METHODS: The peripheral blood mononuclear cells of birch-allergic (n = 24) and non-allergic (n = 47) adolescents were stimulated ex-vivo followed by transcriptomic profiling. Systems-biology approaches were employed to decipher disease-relevant gene networks and deconvolution of associated cell populations. RESULTS: Solely in birch-allergic patients, co-expression analysis revealed activation of networks of innate immunity and antiviral signalling as the immediate response to Bet v 1 stimulation. Toll-like receptors and signal transducer transcription were the main drivers of gene expression patterns. Macrophages and dendritic cells were the main cell subsets responding to Bet v 1. CONCLUSIONS AND CLINICAL RELEVANCE: In birch-pollen-allergic patients, the activated innate immune networks seem to be, in part, the same as those activated during viral infections. This tendency of the immune system to read pollens as viruses may provide new insight to allergy prevention and treatment.


Assuntos
Betula , Hipersensibilidade , Adolescente , Alérgenos , Antígenos de Plantas , Antivirais , Humanos , Imunoglobulina E , Leucócitos Mononucleares , Proteínas de Plantas , Pólen
13.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639020

RESUMO

A subset of adult-onset asthma patients attribute their symptoms to damp and moldy buildings. Symptoms of idiopathic environmental intolerance (IEI) may resemble asthma and these two entities overlap. We aimed to evaluate if a distinct clinical subtype of asthma related to damp and moldy buildings can be identified, to unravel its corresponding pathomechanistic gene signatures, and to investigate potential molecular similarities with IEI. Fifty female adult-onset asthma patients were categorized based on exposure to building dampness and molds during disease initiation. IEI patients (n = 17) and healthy subjects (n = 21) were also included yielding 88 study subjects. IEI was scored with the Quick Environmental Exposure and Sensitivity Inventory (QEESI) questionnaire. Inflammation was evaluated by blood cell type profiling and cytokine measurements. Disease mechanisms were investigated via gene set variation analysis of RNA from nasal biopsies and peripheral blood mononuclear cells. Nasal biopsy gene expression and plasma cytokine profiles suggested airway and systemic inflammation in asthma without exposure to dampness (AND). Similar evidence of inflammation was absent in patients with dampness-and-mold-related asthma (AAD). Gene expression signatures revealed a greater degree of similarity between IEI and dampness-related asthma than between IEI patients and asthma not associated to dampness and mold. Blood cell transcriptome of IEI subjects showed strong suppression of immune cell activation, migration, and movement. QEESI scores correlated to blood cell gene expression of all study subjects. Transcriptomic analysis revealed clear pathomechanisms for AND but not AAD patients. Furthermore, we found a distinct molecular pathological profile in nasal and blood immune cells of IEI subjects, including several differentially expressed genes that were also identified in AAD samples, suggesting IEI-type mechanisms.


Assuntos
Poluição do Ar em Ambientes Fechados , Asma/etiologia , Suscetibilidade a Doenças , Exposição Ambiental/efeitos adversos , Fungos , Perfilação da Expressão Gênica , Transcriptoma , Adulto , Células Sanguíneas/imunologia , Células Sanguíneas/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Humanos , Imunofenotipagem , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Risco
14.
J Allergy Clin Immunol ; 148(4): 1072-1080, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331994

RESUMO

BACKGROUND: Work exposures play a significant role in adult-onset asthma, but the mechanisms of work-related asthma are not fully elucidated. OBJECTIVE: We aimed to reveal the molecular mechanisms of work-related asthma associated with exposure to flour (flour asthma), isocyanate (isocyanate asthma), or welding fumes (welding asthma) and identify potential biomarkers that distinguish these groups from each other. METHODS: We used a combination of clinical tests, transcriptomic analysis, and associated pathway analyses to investigate the underlying disease mechanisms of the blood immune cells and the airway epithelium of 61 men. RESULTS: Compared with the healthy controls, the welding asthma patients had more differentially expressed genes than the flour asthma and isocyanate asthma patients, both in the airway epithelia and in the blood immune cells. In the airway epithelia, active inflammation was detected only in welding asthma patients. In contrast, many differentially expressed genes were detected in blood cells in all 3 asthma groups. Disease-related immune functions in blood cells, including leukocyte migration and inflammatory responses, and decreased expression of upstream cytokines such as TNF and IFN-γ were suppressed in all the asthma groups. In transcriptome-phenotype correlations, hyperresponsiveness (R ∼ |0.6|) had the highest clinical relevance and was associated with a set of exposure group-specific genes. Finally, biomarker subsets of only 5 genes specifically distinguished each of the asthma exposure groups. CONCLUSIONS: This study provides novel data on the molecular mechanisms underlying work-related asthma. We identified a set of 5 promising biomarkers in asthma related to flour, isocyanate, and welding fume exposure to be tested and clinically validated in future studies.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Asma Ocupacional/genética , Farinha/efeitos adversos , Exposição por Inalação/efeitos adversos , Isocianatos/efeitos adversos , Exposição Ocupacional/efeitos adversos , Soldagem , Adulto , Asma Ocupacional/sangue , Asma Ocupacional/imunologia , Asma Ocupacional/fisiopatologia , Biomarcadores , Biópsia , Movimento Celular , Citocinas/sangue , Perfilação da Expressão Gênica , Humanos , Imunoglobulina E/sangue , Leucócitos/imunologia , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/patologia , Óxido Nítrico/metabolismo , Testes de Função Respiratória
15.
Cells ; 10(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062913

RESUMO

Perturbations in cellular molecular events and their associated biological processes provide opportunities for hazard assessment based on toxicogenomic profiling. Long non-coding RNAs (lncRNAs) are transcribed from DNA but are typically not translated into full-length proteins. Via epigenetic regulation, they play important roles in organismal response to environmental stress. The effects of nanoparticles on this important part of the epigenome are understudied. In this study, we investigated changes in lncRNA associated with hazardous inhalatory exposure of mice to 16 engineered nanomaterials (ENM)-4 ENM (copper oxide, multi-walled carbon nanotubes, spherical titanium dioxide, and rod-like titanium dioxide particles) with 4 different surface chemistries (pristine, COOH, NH2, and PEG). Mice were exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by cytological analyses and transcriptomic characterization of whole lung tissues. The number of significantly altered non-coding RNA transcripts, suggestive of their degrees of toxicity, was different for each ENM type. Particle surface chemistry and shape also had varying effects on lncRNA expression. NH2 and PEG caused the strongest and weakest responses, respectively. Via correlational analyses to mRNA expression from the same samples, we could deduce that significantly altered lncRNAs are potential regulators of genes involved in mitotic cell division and DNA damage response. This study sheds more light on epigenetic mechanisms of ENM toxicity and also emphasizes the importance of the lncRNA superfamily as toxicogenomic markers of adverse ENM exposure.


Assuntos
Perfilação da Expressão Gênica , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nanoestruturas , RNA Longo não Codificante , RNA não Traduzido , Amidas , Animais , Análise por Conglomerados , Cobre , Dano ao DNA , Epigênese Genética , Regulação da Expressão Gênica , Teste de Materiais , Camundongos , Nanopartículas , Nanotubos de Carbono , Análise de Sequência com Séries de Oligonucleotídeos , Polietilenoglicóis , Propriedades de Superfície , Titânio/química , Transcriptoma
16.
Adv Sci (Weinh) ; 8(10): 2004588, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026454

RESUMO

Toxicogenomics opens novel opportunities for hazard assessment by utilizing computational methods to map molecular events and biological processes. In this study, the transcriptomic and immunopathological changes associated with airway exposure to a total of 28 engineered nanomaterials (ENM) are investigated. The ENM are selected to have different core (Ag, Au, TiO2, CuO, nanodiamond, and multiwalled carbon nanotubes) and surface chemistries (COOH, NH2, or polyethylene glycosylation (PEG)). Additionally, ENM with variations in either size (Au) or shape (TiO2) are included. Mice are exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by extensive histological/cytological analyses and transcriptomic characterization of lung tissue. The results demonstrate that transcriptomic alterations are correlated with the inflammatory cell infiltrate in the lungs. Surface modification has varying effects on the airways with amination rendering the strongest inflammatory response, while PEGylation suppresses toxicity. However, toxicological responses are also dependent on ENM core chemistry. In addition to ENM-specific transcriptional changes, a subset of 50 shared differentially expressed genes is also highlighted that cluster these ENM according to their toxicity. This study provides the largest in vivo data set currently available and as such provides valuable information to be utilized in developing predictive models for ENM toxicity.


Assuntos
Pulmão/efeitos dos fármacos , Nanoestruturas/toxicidade , Toxicogenética/métodos , Animais , Feminino , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Nanoestruturas/química , Nanoestruturas/classificação , Transcriptoma
17.
J Allergy Clin Immunol Pract ; 9(5): 1892-1901.e1, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529723

RESUMO

BACKGROUND: Egg allergy is the second most common food allergy in children. Persistent food allergy increases the risk of anaphylaxis and reduces the quality of life. OBJECTIVE: To determine the efficacy of oral immunotherapy (OIT) with raw egg white powder and study its effects on humoral responses in children with persistent egg allergy. METHODS: Fifty children aged 6 to 17 years with egg allergy, diagnosed by double-blind, placebo-controlled food challenge, were randomized 3:2 to 8 months of OIT with a maintenance dose of 1 g of egg white protein or 6 months of avoidance after which the avoidance group crossed over to OIT. We examined changes in IgE, IgG4, and IgA concentrations to Gal d 1-4 during OIT compared with avoidance and assessed clinical reactivity at 8 and 18 months. RESULTS: After 8 months, 22 of 50 children (44%) on OIT and 1 of 21 (4.8%) on egg avoidance were desensitized to the target dose, 23 of 50 (46%) were partially desensitized (dose <1 g), and 5 of 50 (10%) discontinued. IgG4 concentrations to Gal d 1-4 and IgA to Gal d 1-2 increased significantly, whereas IgE to Gal d 2 decreased. A heatmap analysis of the IgE patterns revealed 3 distinct clusters linked with the clinical outcome. High baseline egg white-specific IgE and polysensitization to Gal d 1-4 related with failure to achieve the maintenance dose at 8 months. After 18 months of treatment, 36 of 50 patients (72%) were desensitized and 8 of 50 (16%) partially desensitized. CONCLUSIONS: OIT with raw egg enables liberation of egg products into the daily diet in most patients. Subjects with high egg white-specific IgE concentrations and sensitization to multiple egg allergen components at baseline benefit from prolonged treatment.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade a Ovo , Administração Oral , Adolescente , Alérgenos , Animais , Galinhas , Criança , Hipersensibilidade a Ovo/terapia , Feminino , Humanos , Imunidade Humoral , Qualidade de Vida
19.
Front Immunol ; 12: 704633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975829

RESUMO

We previously reported the results of a randomized, open-label trial of egg oral immunotherapy (OIT) in 50 children where 44% were desensitized and 46% were partially desensitized after 8 months of treatment. Here we focus on cell-mediated molecular mechanisms driving desensitization during egg OIT. We sought to determine whether changes in genome-wide gene expression in blood cells during egg OIT correlate with humoral responses and the clinical outcome. The blood cell transcriptome of 50 children receiving egg OIT was profiled using peripheral blood mononuclear cell (PBMC) samples obtained at baseline and after 3 and 8 months of OIT. We identified 467 differentially expressed genes (DEGs) after 3 or 8 months of egg OIT. At 8 months, 86% of the DEGs were downregulated and played a role in the signaling of TREM1, IL-6, and IL-17. In correlation analyses, Gal d 1-4-specific IgG4 antibodies associated positively with DEGs playing a role in pathogen recognition and antigen presentation and negatively with DEGs playing a role in the signaling of IL-10, IL-6, and IL-17. Desensitized and partially desensitized patients had differences in their antibody responses, and although most of the transcriptomic changes were shared, both groups had also specific patterns, which suggest slower changes in partially desensitized and activation of NK cells in the desensitized group. OIT for egg allergy in children inhibits inflammation and activates innate immune responses regardless of the clinical outcome at 8 months. Changes in gene expression patterns first appear as posttranslational protein modifications, followed by more sustained epigenetic gene regulatory functions related to successful desensitization.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade a Ovo/terapia , Proteínas do Ovo/imunologia , Genômica/métodos , Imunidade Inata , Inflamação/prevenção & controle , Leucócitos Mononucleares/metabolismo , Transcriptoma , Administração Oral , Adolescente , Alérgenos/administração & dosagem , Alérgenos/uso terapêutico , Especificidade de Anticorpos , Criança , Citocinas/sangue , Relação Dose-Resposta Imunológica , Hipersensibilidade a Ovo/sangue , Hipersensibilidade a Ovo/genética , Hipersensibilidade a Ovo/imunologia , Proteínas do Ovo/administração & dosagem , Proteínas do Ovo/efeitos adversos , Proteínas do Ovo/uso terapêutico , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Imunoglobulinas/sangue , Inflamação/etiologia , Inflamação/imunologia , Isoanticorpos/sangue , Isoanticorpos/imunologia , Contagem de Linfócitos , Subpopulações de Linfócitos/imunologia , Masculino , Resultado do Tratamento
20.
Clin Exp Allergy ; 50(10): 1148-1158, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32865840

RESUMO

BACKGROUND: After the Second World War, the population living in the Karelian region was strictly divided by the "iron curtain" between Finland and Russia. This resulted in different lifestyle, standard of living, and exposure to the environment. Allergic manifestations and sensitization to common allergens have been much more common on the Finnish compared to the Russian side. OBJECTIVE: The remarkable allergy disparity in the Finnish and Russian Karelia calls for immunological explanations. METHODS: Young people, aged 15-20 years, in the Finnish (n = 69) and Russian (n = 75) Karelia were studied. The impact of genetic variation on the phenotype was studied by a genome-wide association analysis. Differences in gene expression (transcriptome) were explored from the blood mononuclear cells (PBMC) and related to skin and nasal epithelium microbiota and sensitization. RESULTS: The genotype differences between the Finnish and Russian populations did not explain the allergy gap. The network of gene expression and skin and nasal microbiota was richer and more diverse in the Russian subjects. When the function of 261 differentially expressed genes was explored, innate immunity pathways were suppressed among Russians compared to Finns. Differences in the gene expression paralleled the microbiota disparity. High Acinetobacter abundance in Russians correlated with suppression of innate immune response. High-total IgE was associated with enhanced anti-viral response in the Finnish but not in the Russian subjects. CONCLUSIONS AND CLINICAL RELEVANCE: Young populations living in the Finnish and Russian Karelia show marked differences in genome-wide gene expression and host contrasting skin and nasal epithelium microbiota. The rich gene-microbe network in Russians seems to result in a better-balanced innate immunity and associates with low allergy prevalence.


Assuntos
Disparidades nos Níveis de Saúde , Hipersensibilidade/epidemiologia , Imunidade Inata , Microbiota/imunologia , Adolescente , Fatores Etários , Feminino , Finlândia/epidemiologia , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Interações entre Hospedeiro e Microrganismos , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Hipersensibilidade/virologia , Imunidade Inata/genética , Imunoglobulina E/sangue , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Leucócitos Mononucleares/virologia , Masculino , Mucosa Nasal/imunologia , Mucosa Nasal/microbiologia , Mucosa Nasal/virologia , Polimorfismo de Nucleotídeo Único , Prevalência , Federação Russa/epidemiologia , Pele/imunologia , Pele/microbiologia , Pele/virologia , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...