Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 2(9): 100398, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34622235

RESUMO

Evidence linking the gut-brain axis to Alzheimer's disease (AD) is accumulating, but the characteristics of causally important microbes are poorly understood. We perform a fecal microbiome analysis in healthy subjects and those with mild cognitive impairment (MCI) and AD. We find that Faecalibacterium prausnitzii (F. prausnitzii) correlates with cognitive scores and decreases in the MCI group compared with the healthy group. Two isolated strains from the healthy group, live Fp360 and pasteurized Fp14, improve cognitive impairment in an AD mouse model. Whole-genome comparison of isolated strains reveals specific orthologs that are found only in the effective strains and are more abundant in the healthy group compared with the MCI group. Metabolome and RNA sequencing analyses of mouse brains provides mechanistic insights into the relationship between the efficacy of pasteurized Fp14, oxidative stress, and mitochondrial function. We conclude that F. prausnitzii strains with these specific orthologs are candidates for gut microbiome-based intervention in Alzheimer's-type dementia.


Assuntos
Doença de Alzheimer/microbiologia , Demência/microbiologia , Faecalibacterium prausnitzii/fisiologia , Microbioma Gastrointestinal , Idoso , Peptídeos beta-Amiloides/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Cognição , Disfunção Cognitiva/microbiologia , Faecalibacterium prausnitzii/genética , Faecalibacterium prausnitzii/isolamento & purificação , Feminino , Genoma Bacteriano , Humanos , Masculino , Metaboloma/genética , Metagenoma , Pasteurização , Análise de Componente Principal , RNA-Seq
2.
AMB Express ; 7(1): 32, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28155199

RESUMO

As yeast is commonly used for RNA production, it is industrially important to breed strains with high RNA contents. The upstream activating factor (UAF) plays an important role in transcription of ribosomal RNA (rRNA), a major constituent of intracellular RNA species. Here, we targeted the essential rRNA transcription regulator Rrn5 of Saccharomyces cerevisiae, a component of the UAF complex, and disrupted the genomic RRN5 gene using a helper plasmid carrying an RRN5 gene. Then we isolated nine suppressor mutants (Sup mutants) of RRN5 gene disruption, causing deficiency in rRNA transcription. The Sup mutants had RNA contents of approximately 40% of the wild type level and expansion of rDNA repeats to ca. 400-700 copies. Reintroduction of a functional RRN5 gene into Sup mutants caused a reduction in the number of rDNA repeats to close to the wild type level but did not change RNA content. However, we found that reintroduction of RRN5 into the Sup16 mutant (in which the FOB1 gene encoding the rDNA replication fork barrier site binding protein was disrupted) resulted in a significant increase (17%) in RNA content compared with wild type, although the rDNA repeat copy number was almost identical to the wild type strain. In this case, upregulated transcription of non-transcribed spacers (NTS) occurred, especially in the NTS2 region; this was likely mediated by RNA polymerase II and accounted for the increased RNA content. Thus, we propose a novel breeding strategy for developing high RNA content yeast by harnessing the essential rRNA transcription regulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...