Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19506, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809674

RESUMO

The coffee white stem borer, Xylotrechus quadripes Chevrolat, 1863 (Coleoptera: Cerambycidae) - here removed from the synonymy with X. javanicus (Laporte & Gory, 1841) - is the most notorious pest in Arabica coffee plantations in many southeast Asian countries. It can cause damage up to 80% in various gardens. The borer is reported on 16 different host plants other than coffee. The severity of the pest was more commonly recorded on the Arabica coffee than on other species. More pest intensity on the coffee may be due to its innate evolutionary relation compared to other host plants. Studies revealed that the borer is more specific and attracted to the volatile of coffee plants but it is still needs a strong supporting data. Some of the behavioural and ecological-adaptations of borers leads to avoid predation and chemical-pesticides reaching them. Hence, no single method gives perfect control of this pest; therefore, harmonic use of different tools such as cultural, mechanical, physical, bio-control and chemical methods are the best way to combat this pest. Though the pest is economically important, the information on chemical and ecological behaviour, host plant resistance and recent advancements in the pest management are scanty. The present article is an endeavour to shed a light on biology, behaviour, host selection and management of X. quadripes with multiple instances, that will give a new avenue for the researchers to work on the least concerned fields to develop strong management practice and alert against future pest outbreak.

2.
Heliyon ; 8(10): e11094, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36281399

RESUMO

Nitropolycyclic aromatic hydrocarbons (Nitro-PAH) are highly toxic PHA derivatives. Nitro-PHAs are emitted by carbonaceous materials and PHA post-emission transformation, which causes water and environmental pollution and also exists as carcinogenic and immunotoxic agents. UV light has been shown to cause DNA damage and improves the covalent binding of PAH to DNA significantly. Mosquito breeding grounds are pools of water that can be large open zones or encased ponds with varying levels of sunlight exposure. This research was performed to assess the combined effects of UV-B exposure and Nitro-PAH on the physiological function of Culex quinquefasciatus larvae. To assess the impact of UV-B irradiation and Nitro-PAH exposure on mosquito vectors, parameters were examined: (1) Nitro-PAH availability and its impact on cell fatalities; (2) the detoxifying abilities of cytochrome P450, glutathione-S-transferase, and esterase; (3) the reactions to Reactive Oxygen Species; and (4) The resistance of mosquito larvae to three synthetic pesticides (temephos, imidacloprid, and permethrin). UV-B and Nitro-PAH treatment caused cellular damage and increased major detoxification enzymes such as α & ß-esterase, cytoP450, CAT, GST, and POX. The levels of oxidative stress, ROS and protein carbonyl content, nitrite, ascorbic acid and thiobarbituric acid were decreased significantly. Toxicology bioassays revealed that UV-B + Nitro-PAH exposure significantly increased larval susceptibility. The current study concludes that prior exposure to Nitro-PAHs and UV-B may make mosquito larvae more vulnerable to chemical insecticides.

3.
Front Physiol ; 12: 742871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867448

RESUMO

The South American pinworm Tuta absoluta (Meyrick) (Family: Gelechiidae) is one of the most devastating lepidopteran pests in the developing countries of South America, Africa, and Asia. This pest is classified as the most serious threat for tomato production worldwide. In the present study, we analyzed RNAi-mediated control through exogenously applied dsRNA delivery on tomato. The dsRNA treatments were made to target the juvenile hormone binding protein and the v-ATPase B. Both mRNA targets were cloned, validated by sequencing, and used to produce each dsRNA. After treatments the relative transcript expression was analyzed using qRTPCR to assess to efficacy of RNAi. A leaf-dip assay was used to provide late 2nd instar larvae three feeding access periods: 24, 48, and 72 h, to evaluate the effect of gene silencing of each target. Larvae were fed tomato leaves coated with five different RNAi concentrations (10, 20, 30, 40, and 50 micrograms/centimeter-squared), that suppressed two genes (juvenile hormone protein, JHBP, and vacuolar-type adenosine triphosphatase enzyme, v-ATPase). Treatments with dsRNA showed a significant increase in mortality at 24, 48, and 72 h after ingestion (P < 0.01, α = 0.05), along with reduced leaf damage, and increased feeding deterrence. The results suggest that these two RNAi products may provide a suitable treatment for control of this and other lepidopteran pests.

4.
Front Physiol ; 11: 594845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329043

RESUMO

The shoot and fruit borer, Leucinodes orbonalis (Lepidoptera: Crambidae) is the major cause of low productivity in eggplant and insecticides being the mainstay of management of L. orbonalis. However, field control failures are widespread due to the evolution of insecticide resistance. Taking advantage of the whole genome sequence information, the present study investigated the level of insecticide resistance and the expression pattern of individual carboxylesterase (CE) and glutathione S-transferases (GSTs) genes in various field collected populations of L. orbonalis. Dose-mortality bioassays revealed a very high level of resistance development against fenvalerate (48.2-160-fold), phosalone (94-534.6-fold), emamectin benzoate (7.2-55-fold), thiodicarb (9.64-22.7-fold), flubendiamide (187.4-303.0-fold), and chlorantraniliprole (1.6-8.6-fold) in field populations as compared to laboratory-reared susceptible iso-female colony (Lo-S). Over-production of detoxification enzymes viz., CE and GST were evident upon enzyme assays. Mining of the draft genome of L. orbonalis yielded large number of genes potentially belonging to the CE and GST gene families with known history of insecticide resistance in other insects. Subsequent RT-qPCR studies on relative contribution of individual genes revealed over-expression of numerous GSTs and few CEs in field populations, indicating their possible involvement of metabolic enzymes in insecticide resistance. The genomic information will facilitate the development of novel resistance management strategies against this pest.

5.
Zootaxa ; 4345(1): 1-317, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29245618

RESUMO

A checklist of longhorn beetles (Coleoptera: Cerambycidae) within the present geographical frontier of Indian subcontinent up to 2016 is provided. As per the current checklist prepared, there are 1536 species, classified under 440 genera, 72 tribes, and seven subfamilies of Cerambycidae (Parandrinae is not present in India). The report is accounted for 4.2 per cent of species, 7.94 per cent of genera and 28.24 per cent of tribes from India as compared to global record. For each species, accepted nomenclature followed by all relevant works reporting systematics, distribution and ecology of Indian longhorn beetles is provided along with synonyms, type locality and distribution within and outside India.


Assuntos
Besouros , Distribuição Animal , Animais , Ecologia , Geografia , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...