Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 451(7177): 437-40, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18216848

RESUMO

The atmospheres of the gas giant planets (Jupiter and Saturn) contain jets that dominate the circulation at visible levels. The power source for these jets (solar radiation, internal heat, or both) and their vertical structure below the upper cloud are major open questions in the atmospheric circulation and meteorology of giant planets. Several observations and in situ measurements found intense winds at a depth of 24 bar, and have been interpreted as supporting an internal heat source. This issue remains controversial, in part because of effects from the local meteorology. Here we report observations and modelling of two plumes in Jupiter's atmosphere that erupted at the same latitude as the strongest jet (23 degrees N). The plumes reached a height of 30 km above the surrounding clouds, moved faster than any other feature (169 m s(-1)), and left in their wake a turbulent planetary-scale disturbance containing red aerosols. On the basis of dynamical modelling, we conclude that the data are consistent only with a wind that extends well below the level where solar radiation is deposited.

2.
Nature ; 438(7069): 765-78, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16319829

RESUMO

The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Chuva , Voo Espacial , Vento , Umidade , Gelo/análise , Metano/análise , Metano/química
3.
Science ; 280(5363): 570-2, 1998 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-9554844

RESUMO

Near-infrared images of Uranus taken with the Hubble Space Telescope in July and October 1997 revealed discrete clouds with contrasts exceeding 10 times the highest contrast observed before with other techniques. At visible wavelengths, these 10 clouds had lower contrasts than clouds seen by Voyager 2 in 1986. Uranus' rotational rates for southern latitudes were identical in 1986 and 1997. Clouds in northern latitudes rotate slightly more slowly than clouds in opposite southern latitudes.


Assuntos
Meio Ambiente Extraterreno , Urano , Atmosfera , Metano
4.
Science ; 267(5202): 1296-301, 1995 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-7871426

RESUMO

The aftermath of the impacts of periodic comet Shoemaker-Levy 9 on Jupiter was studied with the Wide Field Planetary Camera 2 on the Hubble Space Telescope. The impact debris particles may owe their dark brown color to organic material rich in sulfur and nitrogen. The total volume of aerosol 1 day after the last impact is equal to the volume of a sphere of radius 0.5 kilometer. In the optically thick core regions, the particle mean radius is between 0.15 and 0.3 micrometer, and the aerosol is spread over many scale heights, from approximately 1 millibar to 200 millibars of pressure or more. Particle coagulation can account for the evolution of particle radius and total optical depth during the month following the impacts.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Sistema Solar , Atmosfera , Nitrogênio/análise , Enxofre/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...