Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 15(1): e202102217, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34725931

RESUMO

Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal-organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO-67-X (X: H, NH2 , CH3 ) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature-programmed desorption mass spectrometry (TPD-MS) and in-situ temperature-programmed infrared (TP-IR) spectroscopy. Ammonia was observed to interact with µ3 -OH groups present on the secondary building unit of UiO-67-X MOFs via hydrogen bonding. TP-IR studies revealed that under cryogenic UHV conditions, UiO-67-X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C-H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH-π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD-MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol-1 , suggesting physisorption of ammonia to UiO-67-X. In addition, missing linker defect sites, consisting of H2 O coordinated to Zr4+ sites, were detected through the formation of nNH3 ⋅H2 O clusters, characterized through in-situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO-67 MOFs. This highlights an advantage of using NH3 for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO-67-X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.


Assuntos
Estruturas Metalorgânicas , Adsorção , Amônia , Sítios de Ligação
2.
Nat Commun ; 12(1): 546, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483513

RESUMO

Isotopes of heavier gases including carbon (13C/14C), nitrogen (13N), and oxygen (18O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules. These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positron-emission tomography (PET). Established distillation-based isotope gas separation methods have a separation factor (S) below 1.05 and incur very high operating costs due to high energy consumption and long processing times, highlighting the need for new separation technologies. Here, we show a rapid and highly selective adsorption-based separation of 18O2 from 16O2 with S above 60 using nanoporous adsorbents operating near the boiling point of methane (112 K), which is accessible through cryogenic liquefied-natural-gas technology. A collective-nuclear-quantum effect difference between the ordered 18O2 and 16O2 molecular assemblies confined in subnanometer pores can explain the observed equilibrium separation and is applicable to other isotopic gases.

3.
J Phys Condens Matter ; 24(32): 325501, 1-16, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22787158

RESUMO

The structural, electronic, phonon dispersion and thermodynamic properties of MHCO(3) (M = Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO(3) has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO(3) using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy (F(PH)) calculations predict that LiHCO(3) will be stable under suitable conditions of temperature and partial pressures of CO(2) and H(2)O. Our calculations indicate that the [Formula: see text] groups in LiHCO(3) and NaHCO(3) form an infinite chain structure through O⋯H⋯O hydrogen bonds. In contrast, the [Formula: see text] anions form dimers, [Formula: see text], connected through double hydrogen bonds in all phases of KHCO(3). Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical-transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0-900 K, the F(PH) and the entropies (S) of MHCO(3) (M =Li, Na, K) systems vary as F(PH)(LiHCO(3)) > F(PH)(NaHCO(3)) > F(PH)(KHCO(3)) and S(KHCO(3)) > S(NaHCO(3)) > S(LiHCO(3)), respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO(2) capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO(2) capture technology, in agreement with experiments.

4.
Nanotechnology ; 20(20): 204001, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19420649

RESUMO

The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.


Assuntos
Cristalização/métodos , Metais/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Água/química , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
5.
Phys Chem Chem Phys ; 9(12): 1438-52, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17356751

RESUMO

Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...