Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083461

RESUMO

Wearable electroencephalography (EEG) enables real-time interactions with the sleeping brain in real-life settings. An important parameter to monitor during these interactions are sleep arousals, i.e. temporary increases in EEG frequency, that compose sleep dynamics, but are challenging to detect without delay. We describe the development of an EEG- and accelerometer(ACC)-based sensing approach to detect arousals in real-time. We investigated the ability of these sensing modalities to timely and accurately detect arousals. When evaluated on 6 nights of mobile recordings, ACC had a median real-time delay of 2 s and was therefore better suited for an early detection of arousals than EEG (4.7 s). The detection performance was independent of sleep stages, but worked better on longer arousals. Our results demonstrate that a head-mounted ACC might be a cost-effective and easy-to-integrate solution for arousal detection where short delays are important or EEG signals are not available.


Assuntos
Nível de Alerta , Sono , Fases do Sono , Eletroencefalografia/métodos , Acelerometria
2.
Front Sports Act Living ; 5: 1157987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229363

RESUMO

In epidemiological studies related to winter sports, especially alpine skiing, an unresolved methodological challenge is the quantification of actual on-snow activity exposure. Such information would be relevant for reporting meaningful measures of injury incidence, which refers to the number of new injuries that occur in a given population and time period. Accordingly, accurate determination of the denominator, i.e., actual "activity exposure time", is critical for injury surveillance and reporting. In this perspective article, we explore the question of whether wearable sensors in combination with mHealth applications are suitable tools to accurately quantify the periods in a ski day when the skier is physically skiing and not resting or using a mechanical means of transport. As a first proof of concept, we present exemplary data from a youth competitive alpine skier who wore his smartphone with embedded sensors on his body on several ski days during one winter season. We compared these data to self-reported estimates of ski exposure, as used in athletes' training diaries. In summary, quantifying on-snow activity exposure in alpine skiing using sensor data from smartphones is technically feasible. For example, the sensors could be used to track ski training sessions, estimate the actual time spent skiing, and even quantify the number of runs and turns made as long as the smartphone is worn. Such data could be very useful in determining actual exposure time in the context of injury surveillance and could prove valuable for effective stress management and injury prevention in athletes.

4.
Front Psychol ; 13: 1006034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467232

RESUMO

Background: Fear of movement is thought to interfere with the recovery from low back pain (LBP). To date, the relationship between fear of movement and postural balance has not been adequately elucidated. Recent findings suggest that more specific fears need to be assessed and put in relation to a specific movement task. We propose that the fear to bend the trunk in a certain direction is distinctly related to the amount of postural sway in different directions. Therefore, our aim was to investigate whether fear of movement in general and fear of bending the trunk in a certain plane is related to postural sway. Methods: Data was collected from participants with LBP during two assessments ~3 weeks apart. Postural sway was measured with a force-platform during quiet standing with the eyes closed. Fear of movement was assessed with an abbreviated version of the Tampa Scale of Kinesiophobia (TSK-11) and custom items referring to fear of bending the trunk in the sagittal and the frontal plane. Results: Based on data from 25 participants, fear of bending the trunk in the frontal plane was positively related to displacement in the sagittal and frontal plane and to velocity in the frontal plane (χ 2 = 4.35, p = 0.04; χ 2 = 8.15, p = 0.004; χ 2 = 9.79, p = 0.002). Fear of bending the trunk in the sagittal plane was not associated with any direction specific measure of sway. A positive relation of the TSK-11 with velocity of the frontal plane (χ 2 = 7.14, p = 0.008) was found, but no association with undirected measures of sway. Discussion: Fear of bending the trunk in the frontal plane may be especially relevant to postural sway under the investigated stance conditions. It is possible that fear of bending the trunk in the frontal plane could interfere with balance control at the hip, shifting the weight from side to side to control balance. Conclusion: For the first time the directional relationship of fear of movement and postural sway was studied. Fear of bending the trunk in the frontal plane was positively associated with several measures of postural sway.

5.
BMC Pediatr ; 22(1): 616, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289537

RESUMO

BACKGROUND: Supplementary treatment options after pediatric severe traumatic brain injury (TBI) are needed to improve neurodevelopmental outcome. Evidence suggests enhancement of brain delta waves via auditory phase-targeted stimulation might support neuronal reorganization, however, this method has never been applied in analgosedated patients on the pediatric intensive care unit (PICU). Therefore, we conducted a feasibility study to investigate this approach: In a first recording phase, we examined feasibility of recording over time and in a second stimulation phase, we applied stimulation to address tolerability and efficacy. METHODS: Pediatric patients (> 12 months of age) with severe TBI were included between May 2019 and August 2021. An electroencephalography (EEG) device capable of automatic delta wave detection and sound delivery through headphones was used to record brain activity and for stimulation (MHSL-SleepBand version 2). Stimulation tolerability was evaluated based on report of nurses, visual inspection of EEG data and clinical signals (heart rate, intracranial pressure), and whether escalation of therapy to reduce intracranial pressure was needed. Stimulation efficacy was investigated by comparing EEG power spectra of active stimulation versus muted stimulation (unpaired t-tests). RESULTS: In total, 4 out of 32 TBI patients admitted to the PICU (12.5%) between 4 and 15 years of age were enrolled in the study. All patients were enrolled in the recording phase and the last one also to the stimulation phase. Recordings started within 5 days after insult and lasted for 1-4 days. Overall, 23-88 h of EEG data per patient were collected. In patient 4, stimulation was enabled for 50 min: No signs of patient stress reactions were observed. Power spectrums between active and muted stimulation were not statistically different (all P > .05). CONCLUSION: Results suggests good feasibility of continuously applying devices needed for auditory stimulation over multiple days in pediatric patients with TBI on PICU. Very preliminary evidence suggests good tolerability of auditory stimuli, but efficacy of auditory stimuli to enhance delta waves remains unclear and requires further investigation. However, only low numbers of severe TBI patients could be enrolled in the study and, thus, future studies should consider an international multicentre approach.


Assuntos
Lesões Encefálicas Traumáticas , Criança , Humanos , Estimulação Acústica , Estudos de Viabilidade , Lesões Encefálicas Traumáticas/terapia , Eletroencefalografia/métodos , Cuidados Críticos
6.
JMIR Serious Games ; 10(2): e31685, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687390

RESUMO

BACKGROUND: Postural balance is compromised in people with low back pain, possibly by changes in motor control of the trunk. Augmenting exercising interventions with sensor-based feedback on trunk posture and movements might improve postural balance in people with low back pain. OBJECTIVE: We hypothesized that exercising with feedback on trunk movements reduces sway in anterior-posterior direction during quiet standing in people with low back pain. Secondary outcomes were lumbar spine and hip movement assessed during box lift and waiter bow tasks, as well as participant-reported outcomes. Adherence to the exercising intervention was also examined. METHODS: A randomized controlled trial was conducted with the intervention group receiving unsupervised home exercises with visual feedback using the Valedo Home, an exergame based on 2 inertial measurement units. The control group received no intervention. Outcomes were recorded by blinded staff during 4 visits (T1-T4) at University Hospital Zurich. The intervention group performed 9 sessions of 20 minutes in the 3 weeks between T2 and T3 and were instructed to exercise at their own convenience between T3 and T4. Postural balance was assessed on a force platform. Lumbar spine and hip angles were obtained from 3 inertial measurement units. The assessments included pain intensity, disability, quality of life, and fear of movement questionnaires. RESULTS: A total of 32 participants with nonspecific low back pain completed the first assessment T1, and 27 (84%) participants were randomized at T2 (n=14, 52% control and n=13, 48% intervention). Intention-to-treat analysis revealed no significant difference in change in anterior-posterior sway direction during the intervention period with a specified schedule (T2-T3) between the groups (W=99; P=.36; r=0.07). None of the outcomes showed significant change in accordance with our hypotheses. The intervention group completed a median of 61% (55/90; range 2%-99%) of the exercises in the predefined training program. Adherence was higher in the first intervention period with a specified schedule. CONCLUSIONS: The intervention had no significant effect on postural balance or other outcomes, but the wide range of adherence and a limited sample size challenged the robustness of these conclusions. Future work should increase focus on improving adherence to digital interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT04364243; https://clinicaltrials.gov/ct2/show/NCT04364243. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/26982.

7.
Commun Med (Lond) ; 2: 30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603302

RESUMO

Background: Auditory stimulation has emerged as a promising tool to enhance non-invasively sleep slow waves, deep sleep brain oscillations that are tightly linked to sleep restoration and are diminished with age. While auditory stimulation showed a beneficial effect in lab-based studies, it remains unclear whether this stimulation approach could translate to real-life settings. Methods: We present a fully remote, randomized, cross-over trial in healthy adults aged 62-78 years (clinicaltrials.gov: NCT03420677). We assessed slow wave activity as the primary outcome and sleep architecture and daily functions, e.g., vigilance and mood as secondary outcomes, after a two-week mobile auditory slow wave stimulation period and a two-week Sham period, interleaved with a two-week washout period. Participants were randomized in terms of which intervention condition will take place first using a blocked design to guarantee balance. Participants and experimenters performing the assessments were blinded to the condition. Results: Out of 33 enrolled and screened participants, we report data of 16 participants that received identical intervention. We demonstrate a robust and significant enhancement of slow wave activity on the group-level based on two different auditory stimulation approaches with minor effects on sleep architecture and daily functions. We further highlight the existence of pronounced inter- and intra-individual differences in the slow wave response to auditory stimulation and establish predictions thereof. Conclusions: While slow wave enhancement in healthy older adults is possible in fully remote settings, pronounced inter-individual differences in the response to auditory stimulation exist. Novel personalization solutions are needed to address these differences and our findings will guide future designs to effectively deliver auditory sleep stimulations using wearable technology.

8.
J Clin Monit Comput ; 36(6): 1869-1879, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35332406

RESUMO

Accurate measurement of respiratory rate (RR) in neonates is challenging due to high neonatal RR variability (RRV). There is growing evidence that RRV measurement could inform and guide neonatal care. We sought to quantify neonatal RRV during a clinical study in which we compared multiparameter continuous physiological monitoring (MCPM) devices. Measurements of capnography-recorded exhaled carbon dioxide across 60-s epochs were collected from neonates admitted to the neonatal unit at Aga Khan University-Nairobi hospital. Breaths were manually counted from capnograms and using an automated signal detection algorithm which also calculated mean and median RR for each epoch. Outcome measures were between- and within-neonate RRV, between- and within-epoch RRV, and 95% limits of agreement, bias, and root-mean-square deviation. Twenty-seven neonates were included, with 130 epochs analysed. Mean manual breath count (MBC) was 48 breaths per minute. Median RRV ranged from 11.5% (interquartile range (IQR) 6.8-18.9%) to 28.1% (IQR 23.5-36.7%). Bias and limits of agreement for MBC vs algorithm-derived breath count, MBC vs algorithm-derived median breath rate, MBC vs algorithm-derived mean breath rate were - 0.5 (- 2.7, 1.66), - 3.16 (- 12.12, 5.8), and - 3.99 (- 11.3, 3.32), respectively. The marked RRV highlights the challenge of performing accurate RR measurements in neonates. More research is required to optimize the use of RRV to improve care. When evaluating MCPM devices, accuracy thresholds should be less stringent in newborns due to increased RRV. Lastly, median RR, which discounts the impact of extreme outliers, may be more reflective of the underlying physiological control of breathing.


Assuntos
Capnografia , Taxa Respiratória , Recém-Nascido , Humanos , Taxa Respiratória/fisiologia , Quênia , Monitorização Fisiológica , Respiração
9.
IEEE Trans Biomed Eng ; 69(9): 2916-2925, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35259094

RESUMO

OBJECTIVE: In-phase stimulation of EEG slow waves (SW) during deep sleep has shown to improve cognitive function. SW enhancement is particularly desirable in subjects with low-amplitude SW such as older adults or patients suffering from neurodegeneration. However, existing algorithms to estimate the up-phase of EEG suffer from a poor phase accuracy at low amplitudes and when SW frequencies are not constant. METHODS: We introduce two novel algorithms for real-time EEG phase estimation on autonomous wearable devices, a phase-locked loop (PLL) and, for the first time, a phase vocoder (PV). We compared these phase tracking algorithms with a simple amplitude threshold approach. The optimized algorithms were benchmarked for phase accuracy, the capacity to estimate phase at SW amplitudes between 20 and 60 µV, and SW frequencies above 1 Hz on 324 home-based recordings from healthy older adults and Parkinson disease (PD) patients. Furthermore, the algorithms were implemented on a wearable device and the computational efficiency and the performance was evaluated in simulation and with a PD patient. RESULTS: All three algorithms delivered more than 70% of the stimulation triggers during the SW up-phase. The PV showed the highest capacity on targeting low-amplitude SW and SW with frequencies above 1 Hz. The hardware testing revealed that both PV and PLL have marginal impact on microcontroller load, while the efficiency of the PV was 4% lower. Active stimulation did not influence the phase tracking. CONCLUSION: This work demonstrated that phase-accurate auditory stimulation can also be delivered during fully remote sleep interventions in populations with low-amplitude SW.


Assuntos
Eletroencefalografia , Dispositivos Eletrônicos Vestíveis , Estimulação Acústica , Idoso , Algoritmos , Benchmarking , Humanos , Sono/fisiologia
10.
Front Neurosci ; 16: 755958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185455

RESUMO

Sufficient recovery during sleep is the basis of physical and psychological well-being. Understanding the physiological mechanisms underlying this restorative function is essential for developing novel approaches to promote recovery during sleep. Phase-targeted auditory stimulation (PTAS) is an increasingly popular technique for boosting the key electrophysiological marker of recovery during sleep, slow-wave activity (SWA, 1-4 Hz EEG power). However, it is unknown whether PTAS induces physiological sleep. In this study, we demonstrate that, when applied during deep sleep, PTAS accelerates SWA decline across the night which is associated with an overnight improvement in attentional performance. Thus, we provide evidence that PTAS enhances physiological sleep and demonstrate under which conditions this occurs most efficiently. These findings will be important for future translation into clinical populations suffering from insufficient recovery during sleep.

11.
Sleep ; 45(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34373925

RESUMO

The propagating pattern of sleep slow waves (high-amplitude oscillations < 4.5 Hz) serves as a blueprint of cortical excitability and brain connectivity. Phase-locked auditory stimulation is a promising tool for the modulation of ongoing brain activity during sleep; however, its underlying mechanisms remain unknown. Here, eighteen healthy young adults were measured with high-density electroencephalography in three experimental conditions; one with no stimulation, one with up- and one with down-phase stimulation; ten participants were included in the analysis. We show that up-phase auditory stimulation on a right prefrontal area locally enhances cortical involvement and promotes traveling by increasing the propagating distance and duration of targeted small-amplitude waves. On the contrary, down-phase stimulation proves more efficient at perturbing large-amplitude waves and interferes with ongoing traveling by disengaging cortical regions and interrupting high synchronicity in the target area as indicated by increased traveling speed. These results point out different underlying mechanisms mediating the effects of up- and down-phase stimulation and highlight the strength of traveling wave analysis as a sensitive and informative method for the study of connectivity and cortical excitability alterations.


Assuntos
Eletroencefalografia , Sono , Estimulação Acústica , Biomarcadores , Encéfalo/fisiologia , Humanos , Sono/fisiologia , Adulto Jovem
12.
Gates Open Res ; 5: 93, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901754

RESUMO

Background: Heart rate (HR) and respiratory rate (RR) can be challenging to measure accurately and reliably in neonates. The introduction of innovative, non-invasive measurement technologies suitable for resource-constrained settings is limited by the lack of appropriate clinical thresholds for accuracy comparison studies. Methods: We collected measurements of photoplethysmography-recorded HR and capnography-recorded exhaled carbon dioxide across multiple 60-second epochs (observations) in enrolled neonates admitted to the neonatal care unit at Aga Khan University Hospital in Nairobi, Kenya. Trained study nurses manually recorded HR, and the study team manually counted individual breaths from capnograms. For comparison, HR and RR also were measured using an automated signal detection algorithm. Clinical measurements were analyzed for repeatability. Results: A total of 297 epochs across 35 neonates were recorded. Manual HR showed a bias of -2.4 (-1.8%) and a spread between the 95% limits of agreement (LOA) of 40.3 (29.6%) compared to the algorithm-derived median HR. Manual RR showed a bias of -3.2 (-6.6%) and a spread between the 95% LOA of 17.9 (37.3%) compared to the algorithm-derived median RR, and a bias of -0.5 (1.1%) and a spread between the 95% LOA of 4.4 (9.1%) compared to the algorithm-derived RR count. Manual HR and RR showed repeatability of 0.6 (interquartile range (IQR) 0.5-0.7), and 0.7 (IQR 0.5-0.8), respectively. Conclusions: Appropriate clinical thresholds should be selected a priori when performing accuracy comparisons for HR and RR. Automated measurement technologies typically use median values rather than counts, which significantly impacts accuracy. A wider spread between the LOA, as much as 30%, should be considered to account for the observed physiological nuances and within- and between-neonate variability and different averaging methods. Wider adoption of thresholds by data standards organizations and technology developers and manufacturers will increase the robustness of clinical comparison studies.

13.
J Med Internet Res ; 23(10): e26476, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34609317

RESUMO

BACKGROUND: Multisensor fitness trackers offer the ability to longitudinally estimate sleep quality in a home environment with the potential to outperform traditional actigraphy. To benefit from these new tools for objectively assessing sleep for clinical and research purposes, multisensor wearable devices require careful validation against the gold standard of sleep polysomnography (PSG). Naturalistic studies favor validation. OBJECTIVE: This study aims to validate the Fitbit Charge 2 against portable home PSG in a shift-work population composed of 59 first responder police officers and paramedics undergoing shift work. METHODS: A reliable comparison between the two measurements was ensured through the data-driven alignment of a PSG and Fitbit time series that was recorded at night. Epoch-by-epoch analyses and Bland-Altman plots were used to assess sensitivity, specificity, accuracy, the Matthews correlation coefficient, bias, and limits of agreement. RESULTS: Sleep onset and offset, total sleep time, and the durations of rapid eye movement (REM) sleep and non-rapid-eye movement sleep stages N1+N2 and N3 displayed unbiased estimates with nonnegligible limits of agreement. In contrast, the proprietary Fitbit algorithm overestimated REM sleep latency by 29.4 minutes and wakefulness after sleep onset (WASO) by 37.1 minutes. Epoch-by-epoch analyses indicated better specificity than sensitivity, with higher accuracies for WASO (0.82) and REM sleep (0.86) than those for N1+N2 (0.55) and N3 (0.78) sleep. Fitbit heart rate (HR) displayed a small underestimation of 0.9 beats per minute (bpm) and a limited capability to capture sudden HR changes because of the lower time resolution compared to that of PSG. The underestimation was smaller in N2, N3, and REM sleep (0.6-0.7 bpm) than in N1 sleep (1.2 bpm) and wakefulness (1.9 bpm), indicating a state-specific bias. Finally, Fitbit suggested a distribution of all sleep episode durations that was different from that derived from PSG and showed nonbiological discontinuities, indicating the potential limitations of the staging algorithm. CONCLUSIONS: We conclude that by following careful data processing processes, the Fitbit Charge 2 can provide reasonably accurate mean values of sleep and HR estimates in shift workers under naturalistic conditions. Nevertheless, the generally wide limits of agreement hamper the precision of quantifying individual sleep episodes. The value of this consumer-grade multisensor wearable in terms of tackling clinical and research questions could be enhanced with open-source algorithms, raw data access, and the ability to blind participants to their own sleep data.


Assuntos
Monitores de Aptidão Física , Sono , Actigrafia , Frequência Cardíaca , Humanos , Polissonografia , Reprodutibilidade dos Testes
14.
JMIR Res Protoc ; 10(8): e26982, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435954

RESUMO

BACKGROUND: Physical exercise is a common treatment for people with low back pain (LBP). Wearable sensors that provide feedback on body movements and posture during exercise may enhance postural balance and motor control in people with LBP. OBJECTIVE: This study aims to investigate whether physical exercising with postural feedback (EPF) improves postural balance, motor control, and patient-reported outcomes in people with LBP. METHODS: The study was an assessor-blinded 2×2 factorial trial. We planned to recruit 80 participants with nonspecific LBP who did not receive treatment for LBP. In addition, we aimed to recruit 40 patients with chronic, nonspecific LBP who were receiving exercise therapy (ET) at the University Hospital Zurich. Both ET patients and participants without treatment were randomized to receive either an additional EPF intervention or no additional intervention. This resulted in four different combinations of interventions: ET+EPF, ET, EPF, and no intervention. The participants underwent outcome assessments at inclusion (T1); 3 weeks later, at randomization (T2); after an intervention period of 3 weeks with a predefined exercise schedule for participants receiving EPF (T3); and after an additional 6 weeks, during which participants assigned to the EPF groups could exercise as much as they wished (T4). Patients receiving ET completed their regularly prescribed therapies during the study period. Balance was assessed during quiet standing on a force platform, and motor control was assessed during a lifting task and a waiter's bow task. Physical activity was recorded using an activity tracker and the participants' mobile phones during the study. The predefined EPF schedule consisted of nine sessions of 20 minutes of exercise with a tablet and inertial measurement unit sensors at home. Participants performed a series of trunk and hip movements and received feedback on their movements in a gamified environment displayed on the tablet. RESULTS: The first participant was recruited in May 2019. Data collection was completed in October 2020, with 3 patients and 32 eligible people without therapy who passed the eligibility check. CONCLUSIONS: Although it will not be possible to investigate differences in patients and people without other therapies, we expect this pilot study to provide insights into the potential of EPF to improve balance in people with LBP and adherence to such interventions. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/26982.

15.
Chronobiol Int ; 38(12): 1702-1713, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34278901

RESUMO

Consumer-grade, multi-sensor, rest-activity trackers may be powerful tools, to help optimize rest-activity management in shiftwork populations undergoing circadian misalignment. Nevertheless, performance testing of such devices under field conditions is scarce. We previously validated Fitbit Charge 2TM against home polysomnography and now evaluated the potential of this device to document differences in rest-activity behavior, including sleep macrostructure, in first-responder shift workers in an operational setting. We continuously monitored 89 individuals (54% females; mean age: 33.9 ± 7.7 years) for 32.5 ± 9.3 days and collected 2,974 individual sleep episodes scattered around the clock. We stratified the study participants according to their self-reported circadian preference on the reduced Horne-Östberg Morningness-Evening Questionnaire (rMEQ; the scores from 4 participants were missing). Fitbit estimates of sleep duration, wakefulness after sleep onset (WASO), REM sleep percentage in the first NREM-REM sleep cycle, and REM sleep latency formed approximately sinusoidal oscillations across 24 hours. Generalized additive mixed model analyses revealed that the phase position of sleep duration minimum was delayed by 2.8 h in evening types (ET; rMEQ ≤ 11; n = 20) and by 2.6 h in intermediate types (IT; 11 < rMEQ < 18; n = 45) when compared to morning types (MT; rMEQ ≥ 18; n = 20). Similarly, the phase position of WASO was delayed by 2.7 h in ET compared to MT. While nocturnal sleep duration did not differ among the three groups, sleep episodes during the biological day decreased in duration from ET to IT to MT. Together, the findings support the notion that a consumer-grade, rest-activity tracker allows estimation of behavioral sleep/wake cycles and sleep macrostructure in shift workers under naturalistic conditions that are consistent with their self-reported chronotype.


Assuntos
Ritmo Circadiano , Sono , Adulto , Feminino , Monitores de Aptidão Física , Humanos , Masculino , Polissonografia , Inquéritos e Questionários
16.
JMIR Mhealth Uhealth ; 9(7): e26149, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328440

RESUMO

BACKGROUND: Travel to clinics for chronic wound management is burdensome to patients. Remote assessment and management of wounds using mobile and telehealth approaches can reduce this burden and improve patient outcomes. An essential step in wound documentation is the capture of wound images, but poor image quality can have a negative influence on the reliability of the assessment. To date, no study has investigated the quality of remotely acquired wound images and whether these are suitable for wound self-management and telemedical interpretation of wound status. OBJECTIVE: Our goal was to develop a mobile health (mHealth) tool for the remote self-assessment of digital ulcers (DUs) in patients with systemic sclerosis (SSc). We aimed to define and validate objective measures for assessing the image quality, evaluate whether an automated feedback feature based on real-time assessment of image quality improves the overall quality of acquired wound images, and evaluate the feasibility of deploying the mHealth tool for home-based chronic wound self-monitoring by patients with SSc. METHODS: We developed an mHealth tool composed of a wound imaging and management app, a custom color reference sticker, and a smartphone holder. We introduced 2 objective image quality parameters based on the sharpness and presence of the color checker to assess the quality of the image during acquisition and enable a quality feedback mechanism in an advanced version of the app. We randomly assigned patients with SSc and DU to the 2 device groups (basic and feedback) to self-document their DU at home over 8 weeks. The color checker detection ratio (CCDR) and color checker sharpness (CCS) were compared between the 2 groups. We evaluated the feasibility of the mHealth tool by analyzing the usability feedback from questionnaires, user behavior and timings, and the overall quality of the wound images. RESULTS: A total of 21 patients were enrolled, of which 15 patients were included in the image quality analysis. The average CCDR was 0.96 (191/199) in the feedback group and 0.86 (158/183) in the basic group. The feedback group showed significantly higher (P<.001) CCS compared to the basic group. The usability questionnaire results showed that the majority of patients were satisfied with the tool, but could benefit from disease-specific adaptations. The median assessment duration was <50 seconds in all patients, indicating the mHealth tool was efficient to use and could be integrated into the daily routine of patients. CONCLUSIONS: We developed an mHealth tool that enables patients with SSc to acquire good-quality DU images and demonstrated that it is feasible to deploy such an app in this patient group. The feedback mechanism improved the overall image quality. The introduced technical solutions consist of a further step towards reliable and trustworthy digital health for home-based self-management of wounds.


Assuntos
Aplicativos Móveis , Telemedicina , Estudos de Viabilidade , Retroalimentação , Humanos , Reprodutibilidade dos Testes
17.
BMC Med Ethics ; 22(1): 51, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931049

RESUMO

BACKGROUND: Ethics review is the process of assessing the ethics of research involving humans. The Ethics Review Committee (ERC) is the key oversight mechanism designated to ensure ethics review. Whether or not this governance mechanism is still fit for purpose in the data-driven research context remains a debated issue among research ethics experts. MAIN TEXT: In this article, we seek to address this issue in a twofold manner. First, we review the strengths and weaknesses of ERCs in ensuring ethical oversight. Second, we map these strengths and weaknesses onto specific challenges raised by big data research. We distinguish two categories of potential weakness. The first category concerns persistent weaknesses, i.e., those which are not specific to big data research, but may be exacerbated by it. The second category concerns novel weaknesses, i.e., those which are created by and inherent to big data projects. Within this second category, we further distinguish between purview weaknesses related to the ERC's scope (e.g., how big data projects may evade ERC review) and functional weaknesses, related to the ERC's way of operating. Based on this analysis, we propose reforms aimed at improving the oversight capacity of ERCs in the era of big data science. CONCLUSIONS: We believe the oversight mechanism could benefit from these reforms because they will help to overcome data-intensive research challenges and consequently benefit research at large.


Assuntos
Big Data , Pesquisa Biomédica , Comitês Consultivos , Comitês de Ética em Pesquisa , Ética em Pesquisa , Humanos
19.
IEEE J Biomed Health Inform ; 25(4): 1284-1291, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32877343

RESUMO

Multiple sclerosis (MS) affects the central nervous system with a wide range of symptoms. MS can, for example, cause pain, changes in mood and fatigue, and may impair a person's movement, speech and visual functions. Diagnosis of MS typically involves a combination of complex clinical assessments and tests to rule out other diseases with similar symptoms. New technologies, such as smartphone monitoring in free-living conditions, could potentially aid in objectively assessing the symptoms of MS by quantifying symptom presence and intensity over long periods of time. Here, we present a deep-learning approach to diagnosing MS from smartphone-derived digital biomarkers that uses a novel combination of a multilayer perceptron with neural soft attention to improve learning of patterns in long-term smartphone monitoring data. Using data from a cohort of 774 participants, we demonstrate that our deep-learning models are able to distinguish between people with and without MS with an area under the receiver operating characteristic curve of 0.88 (95% CI: 0.70, 0.88). Our experimental results indicate that digital biomarkers derived from smartphone data could in the future be used as additional diagnostic criteria for MS.


Assuntos
Aprendizado Profundo , Esclerose Múltipla , Fadiga , Humanos , Esclerose Múltipla/diagnóstico , Redes Neurais de Computação , Smartphone
20.
Knee Surg Sports Traumatol Arthrosc ; 29(5): 1635-1643, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32556431

RESUMO

PURPOSE: Prospective studies assessing the injuries occurring in elite competitive alpine skiers are lacking, and a full picture of all injuries, including those not requiring medical attention, is absent. Likewise, little is known about the sex-specific injury risks and patterns of elite skiers throughout an entire season (i.e. an off-season preparation period and a competition period). Accordingly, this study investigated the injuries of a national team cohort with respect to season period and sex. METHODS: Over an entire season, all injuries occurring in 44 Swiss National Ski Team members (25 females and 19 males) were registered, regardless of whether they required medical attention. Skiers were prospectively monitored by the Oslo Sports Trauma Research Centre (OSTRC) questionnaire and by continuously updated team medical records. Finally, these data were used as a reference for supplemental interviews, in which the correctness and completeness of the prospective data were verified. RESULTS: The risk of suffering at least one injury during an entire season was 75.0% with a 95% confidence interval (73.1%, 76.9%) for traumatic injuries, and 52.3% (50.0%, 54.5%) for overuse injuries. Traumatic injuries concerned the head, lower leg and knee, while overuse injuries affected the lumbar spine, knee and hip. During the competition period, skiers were more prone to traumatic injuries, while during the off-season preparation period, skiers' risk was higher for overuse injuries. Over an entire season, there were no sex differences. However, females were more vulnerable to traumatic injuries during the preparation period and overuse injuries during the competition period, while males had a higher risk for overuse injuries during the preparation period. CONCLUSIONS: When prospectively registering injuries among elite competitive alpine skiers over an entire season, regardless of whether the injuries required medical attention, the injury risks were alarmingly high and substantially larger than those previously reported. Moreover, since injury risks and patterns are season period and sex dependent, it is strongly recommended that (1) injury registration focuses on both the off-season preparation period and the competition period and (2) prevention efforts are specifically tailored to the sex of the athletes. LEVEL OF EVIDENCE: II.


Assuntos
Traumatismos em Atletas/epidemiologia , Comportamento Competitivo , Sistema de Registros , Esqui/lesões , Transtornos Traumáticos Cumulativos/epidemiologia , Feminino , Humanos , Incidência , Masculino , Estudos Prospectivos , Fatores de Risco , Estações do Ano , Distribuição por Sexo , Inquéritos e Questionários , Suíça/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...