Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 280(8): 7186-93, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15611083

RESUMO

The accumulation and transport of solutes are hallmarks of osmoadaptation. In this study we have employed the inability of the Saccharomyces cerevisiae gpd1Delta gpd2Delta mutant both to produce glycerol and to adapt to high osmolarity to study solute transport through aquaglyceroporins and the control of osmostress-induced signaling. High levels of different polyols, including glycerol, inhibited growth of the gpd1Delta gpd2Delta mutant. This growth inhibition was suppressed by expression of the hyperactive allele Fps1-Delta1 of the osmogated yeast aquaglyceroporin, Fps1. The degree of suppression correlated with the relative rate of transport of the different polyols tested. Transport studies in secretory vesicles confirmed that Fps1-Delta1 transports polyols at increased rates compared with wild type Fps1. Importantly, wild type Fps1 and Fps1-Delta1 showed similarly low permeability for water. The growth defect on polyols in the gpd1Delta gpd2Delta mutant was also suppressed by expression of a heterologous aquaglyceroporin, rat AQP9. We surmised that this suppression was due to polyol influx, causing the cells to passively adapt to the stress. Indeed, when aquaglyceroporin-expressing gpd1Delta gpd2Delta mutants were treated with glycerol, xylitol, or sorbitol, the osmosensing HOG pathway was activated, and the period of activation correlated with the apparent rate of polyol uptake. This observation supports the notion that deactivation of the HOG pathway is closely coupled to osmotic adaptation. Taken together, our "conditional" osmotic stress system facilitates studies on aquaglyceroporin function and reveals features of the osmosensing and signaling system.


Assuntos
Pressão Osmótica , Porinas/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Transporte Biológico , Cinética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Álcoois Açúcares/metabolismo , Álcoois Açúcares/farmacologia
2.
Eur J Biochem ; 271(4): 771-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14764093

RESUMO

Aquaporins and aquaglyceroporins mediate the transport of water and solutes across biological membranes. Saccharomyces cerevisiae Fps1 is an aquaglyceroporin that mediates controlled glycerol export during osmoregulation. The transport function of Fps1 is rapidly regulated by osmotic changes in an apparently unique way and distinct regions within the long N- and C-terminal extensions are needed for this regulation. In order to learn more about the mechanisms that control Fps1 we have set up a genetic screen for hyperactive Fps1 and isolated mutations in 14 distinct residues, all facing the inside of the cell. Five of the residues lie within the previously characterized N-terminal regulatory domain and two mutations are located within the approach to the first transmembrane domain. Three mutations cause truncation of the C-terminus, confirming previous studies on the importance of this region for channel control. Furthermore, the novel mutations identify two conserved residues in the channel-forming B-loop as critical for channel control. Structural modelling-based rationalization of the observed mutations supports the notion that the N-terminal regulatory domain and the B-loop could interact in channel control. Our findings provide a framework for further genetic and structural analysis to better understand the mechanism that controls Fps1 function by osmotic changes.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Aquaporinas/química , Transporte Biológico , Western Blotting , Genes Fúngicos , Glicerol/análogos & derivados , Glicerol/metabolismo , Proteínas de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transformação Genética
3.
J Biol Chem ; 279(15): 14954-60, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14752103

RESUMO

The Saccharomyces cerevisiae gene FPS1 encodes an aquaglyceroporin of the major intrinsic protein (MIP) family. The main function of Fps1p seems to be the efflux of glycerol in the adaptation of the yeast cell to lower external osmolarity. Fps1p is an atypical member of the family, because the protein is much larger (669 amino acids) than most MIPs due to long hydrophilic extensions in both termini. We have shown previously that a short domain in the N-terminal extension of the protein is required for restricting glycerol transport through the channel (Tamás, M. J., Karlgren, S., Bill, R. M., Hedfalk, K., Allegri, L., Ferreira, M., Thevelein, J. M., Rydström, J., Mullins, J. G. L., and Hohmann, S. (2003) J. Biol. Chem. 278, 6337-6345). Deletion of the N-terminal domain results in an unregulated channel, loss of glycerol, and osmosensitivity. In this work we have investigated the role of the Fps1p C terminus (139 amino acids). A set of eight truncations has been constructed and tested in vivo in a yeast fps1Delta strain. We have performed growth tests, membrane localization following cell fractionation, and glycerol accumulation measurements as well as an investigation of the osmotic stress response. Our results show that the C-terminal extension is also involved in restricting transport through Fps1p. We have identified a sequence of 12 amino acids, residues 535-546, close to the sixth transmembrane domain. This element seems to be important for controlling Fps1p function. Similar to the N-terminal domain, the C-terminal domain is amphiphilic and has a potential to dip into the membrane.


Assuntos
Proteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Western Blotting , Divisão Celular , Membrana Celular/metabolismo , Deleção de Genes , Glicerol/química , Immunoblotting , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Osmose , Fenótipo , Plasmídeos/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo , Fatores de Tempo
4.
J Biol Chem ; 278(8): 6337-45, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12486125

RESUMO

The controlled export of solutes is crucial for cellular adaptation to hypotonic conditions. In the yeast Saccharomyces cerevisiae glycerol export is mediated by Fps1p, a member of the major intrinsic protein (MIP) family of channel proteins. Here we describe a short regulatory domain that restricts glycerol transport through Fps1p. This domain is required for retention of cellular glycerol under hypertonic stress and hence acquisition of osmotolerance. It is located in the N-terminal cytoplasmic extension close to the first transmembrane domain. Several residues within that domain and its precise position are critical for channel control while the proximal residues 13-215 of the N-terminal extension are not required. The sequence of the regulatory domain and its position are perfectly conserved in orthologs from other yeast species. The regulatory domain has an amphiphilic character, and structural predictions indicate that it could fold back into the membrane bilayer. Remarkably, this domain has structural similarity to the channel forming loops B and E of Fps1p and other glycerol facilitators. Intragenic second-site suppressor mutations of the sensitivity to high osmolarity conferred by truncation of the regulatory domain caused diminished glycerol transport, confirming that elevated channel activity is the cause of the osmosensitive phenotype.


Assuntos
Glicerol/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , Primers do DNA , Cinética , Kluyveromyces/genética , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...