Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 24(6): 930-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22295972

RESUMO

Interleukin (IL)-6 deficient mice develop mature-onset obesity. Furthermore, i.c.v. administration of IL-6 increases energy expenditure, suggesting that IL-6 centrally regulates energy homeostasis. To investigate whether it would be possible for IL-6 to directly influence the energy homeostasis via hypothalamic regulation in humans and rodents, we mapped the distribution of the ligand binding IL-6 receptor α (IL-6Rα) in this brain region. In the human hypothalamus, IL-6Rα-immunoreactivity was detected in perikarya and first-order dendrites of neurones. The IL-6Rα-immunoreactive (-IR) neurones were observed posterior to the level of the interventricular foramen. There, IL-6Rα-IR neurones were located in the lateral hypothalamic, perifornical, dorsal and posterior hypothalamic areas, the hypothalamic dorsomedial nucleus and in the zona incerta. In the caudal part of the hypothalamus, the density of the IL-6Rα-IR neurones gradually increased. Double-labelling immunofluorescent studies demonstrated that IL-6Rα immunoreactivity was localised in the same neurones as the orexigenic neuropeptide, melanin-concentrating hormone (MCH). By contrast, IL-6Rα-immunoreactivity was not observed in the orexin B-IR neurones. To determine whether the observed expression of IL-6Rα is evolutionary conserved, we studied the co-localisation of IL-6Rα with MCH and orexin in the mouse hypothalamus, where IL-6Rα-immunoreactivity was present in numerous MCH-IR and orexin-IR neurones. Our data demonstrate that the MCH neurones of the human hypothalamus, as well as the MCH and orexin neurones of the mouse hypothalamus, contain IL-6Rα. This opens up the possibility that IL-6 influences the energy balance through the MCH neurones in humans, and both MCH and orexin neurones in mice.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Receptores de Interleucina-6/metabolismo , Adulto , Animais , Humanos , Hormônios Hipotalâmicos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Melaninas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Orexinas , Hormônios Hipofisários/fisiologia
2.
J Neuroendocrinol ; 21(9): 777-85, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19703102

RESUMO

In the present study, we explore the central nervous system mechanism underlying the chronic central effects of ghrelin with respect to increasing body weight and body fat. Specifically, using a recently developed ghrelin receptor antagonist, GHS-R1A (JMV2959), we investigate the role of GHS-R1A in mediating the effects of ghrelin on energy balance and on hypothalamic gene expression. As expected, in adult male rats, chronic central treatment with ghrelin for 14 days, when compared to vehicle-treated control rats, resulted in an increased body weight, lean mass and fat mass (assessed by dual X-ray absorptiometry), dissected white fat pad weight, cumulative food intake, food efficiency, respiratory exchange ratio and a decrease of energy expenditure. Co-administration of the ghrelin receptor antagonist JMV2959 suppressed/blocked the majority of these effects, with the notable exception of ghrelin-induced food intake and food efficiency. The hypothesis emerging from these data, namely that GHS-R1A mediates the chronic effects of ghrelin on fat accumulation, at least partly independent of food intake, is discussed in light of the accompanying data regarding the hypothalamic genes coding for peptides and receptors involved in energy balance regulation, which were found to have altered expression in these studies.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Grelina/farmacologia , Antagonistas de Hormônios/farmacologia , Obesidade/induzido quimicamente , Receptores de Grelina/antagonistas & inibidores , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Grelina/administração & dosagem , Grelina/efeitos adversos , Grelina/antagonistas & inibidores , Hormônios/sangue , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Masculino , Obesidade/sangue , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
3.
J Neuroendocrinol ; 21(7): 620-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19490366

RESUMO

Interleukin (IL)-6 is a pro-inflammatory cytokine that also affects metabolic function because IL-6 depleted (IL-6(-/-)) mice develop late-onset obesity. IL-6 appears to act in the central nervous system, presumably in the hypothalamus, to increase energy expenditure that appears to involve stimulation of the sympathetic nervous system. In the present study, we explored possible central mechanisms for the effects exerted by IL-6 on body fat. Therefore, we measured the effects of IL-6 depletion in IL-6(-/-) mice on expression of key hypothalamic peptide genes involved in energy balance by the real time polymerase chain reaction. Additionally, co-localisation between such peptides and IL-6 receptor alpha was investigated by immunohistochemistry. IL-6 deficiency decreased the expression of several peptides found in the paraventricular nucleus (PVN), which is a nucleus that has been attributed an adipostatic function. For example, corticotrophin-releasing hormone (CRH), which is reported to stimulate the sympathetic nervous system, was decreased by 40% in older IL-6(-/-) mice. Oxytocin, which is reported to prevent obesity, was also decreased in older IL-6(-/-) animals, as was arginine vasopressin (AVP). The IL-6 receptor alpha was abundantly expressed in the PVN, but also in the supraoptic nucleus, and was shown to be co-expressed to a high extent with CRH, AVP, oxytocin and thyrotrophin-releasing hormone. These data indicate that depletion of endogenous IL-6, a body fat suppressing cytokine, is associated with the decreased expression of CRH and oxytocin (i.e. energy balance regulating peptides) as well as AVP in the PVN. Because IL-6 receptor alpha is co-expressed with CRH, oxytocin and AVP, IL-6 could stimulate the expression of these peptides directly.


Assuntos
Interleucina-6/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Supraóptico/metabolismo , Adiposidade/genética , Adiposidade/fisiologia , Animais , Arginina Vasopressina/metabolismo , Contagem de Células , Hormônio Liberador da Corticotropina/metabolismo , Imuno-Histoquímica , Interleucina-6/deficiência , Interleucina-6/genética , Subunidade alfa de Receptor de Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ocitocina/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Hormônio Liberador de Tireotropina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA