Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-33859067

RESUMO

Phytic acid or Myo-inositol hexakisphosphate is an essential compound for the rice plants. It remains in the form of phytate, a mixed salt of different mineral cations, in the seeds. The phytate breaks down during germination and provides the inorganic phosphorus and mineral ions to the seedlings. However, humans do not get the benefit of those essential ions from rice consumption due to the absence of phytase in the gut. We envisaged down-regulating ITPK, the gene behind the phytic acid biosynthesis so that its low amount would facilitate a greater amount of free mineral ions in the endosperm. Since there are six homologues of rice ITPK, we studied their expression in seeds. Additionally, we undertook an in-silico analysis of the homologous proteins. Considering the results, we selected ITPK-2 for its RNAi-mediated embryo-specific down-regulation to obtain the low phytate rice. We obtained a 37% reduction of phytic acid content accompanied by a nearly three-fold enhancement of inorganic phosphorus in the transgenic seeds. Additionally, the iron and zinc content increased in polished rice grains compared to the wild type. The results also showed that reduced phytic acid content did not affect the germination potential and seedling growth of the transgenic rice.


Assuntos
Grão Comestível/metabolismo , Oryza/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Fítico/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Grão Comestível/anatomia & histologia , Germinação , Hordeum/genética , Inositol/metabolismo , Minerais/metabolismo , Oryza/anatomia & histologia , Oryza/genética , Fósforo/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plantas Geneticamente Modificadas/anatomia & histologia , Regiões Promotoras Genéticas , Interferência de RNA
2.
GM Crops Food ; 10(2): 115-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31187675

RESUMO

An efficient genetic transformation system is a prerequisite for studying gene functions, molecular breeding program, and introducing new traits. Agrobacterium tumefaciens-mediated genetic transformation is a widely preferred and accepted method for many plants, including pigeon pea. However, the efficiency of transformation of pigeon pea using the existing protocols is low and time-consuming. In the present study, we developed a rapid and highly efficient transformation system of pigeon pea, using embryonic axis-attached cotyledons as explants. We systematically investigated the influence of varying optical densities of Agrobacterium suspension, duration of incubation, and co-cultivation on the transformation efficiency. In our system, a transformation efficiency of approximately 83% was achieved using Agrobacterium cells at an optical density (OD600) of 0.25, infection time of 15 min, and co-culturing with explants for 72 h in the light with 100µM acetosyringone. The entire procedure, starting from seed to establishment of transformed plants in soil, was achieved in 35-40 days. This is a rapid and highly efficient protocol for Agrobacterium-mediated transformation of pigeon pea, which could potentially be a useful reference, not only for the genetic improvement of pigeon pea but also for other recalcitrant leguminous plants.


Assuntos
Agrobacterium tumefaciens/genética , Cajanus/genética , Transformação Genética/genética , Cotilédone/genética , Cotilédone/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...