Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36786318

RESUMO

Since the outbreak of SARS-CoV-2, a multitude of strategies have been explored for the means of protection and shielding against virus particles: filtration equipment (PPE) has been widely used in daily life. In this work, we explore another approach in the form of deactivating coronavirus particles through selective binding onto the surface of metal-organic frameworks (MOFs) to further the fight against the transmission of respiratory viruses. MOFs are attractive materials in this regard, as their rich pore and surface chemistry can easily be modified on demand. The surfaces of three MOFs, UiO-66(Zr), UiO-66-NH2(Zr), and UiO-66-NO2(Zr), have been functionalized with repurposed antiviral agents, namely, folic acid, nystatin, and tenofovir, to enable specific interactions with the external spike protein of the SARS virus. Protein binding studies revealed that this surface modification significantly improved the binding affinity toward glycosylated and non-glycosylated proteins for all three MOFs. Additionally, the pores for the surface-functionalized MOFs can adsorb water, making them suitable for locally dehydrating microbial aerosols. Our findings highlight the immense potential of MOFs in deactivating respiratory coronaviruses to be better equipped to fight future pandemics.

2.
Chem Commun (Camb) ; 58(77): 10768-10788, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36089893

RESUMO

The replacement of traditional incandescent, halogen and fluorescent lamps by white light emitting diodes (WLEDs) is expected to reduce the global electricity consumption by one-third by 2030, according to the US Department of Energy. The current WLED technology uses rare-earth element (REE) based phosphor materials, which, not only is cost-intensive but also constitutes an environmental concern. Hence, researchers are in a quest for a new-generation of opto-electronic materials that can replace the conventional phosphors in WLEDs and thus aim towards a cleaner and more energy efficient lighting technology for the future. Luminescent metal-organic frameworks (LMOFs) have recently emerged as a new sub-class of MOFs which have demonstrated enormous potential for applications in sensing, imaging, optoelectronics and in solid-state lighting (SSL) technology. LMOFs could be game changers as lighting phosphors due to advantages such as high luminescence quantum yield, tunable excitation and emission which can be achieved by rational design and optimization of metal centers, linkers, and the guest molecules, facile fabrication into devices, and structural robustness. These clear advantageous features of LMOFs make them score over other contemporary materials, and enable them to be futuristic phosphor materials for WLED technology. In this feature article, we will provide an overview of the most recent developments of LMOF-based phosphor materials for SSL with a special focus on WLED technology. The emphasis will be centered around REE-free LMOFs, as the aim is to direct the attention of the readers towards a more viable and greener lighting technology.

3.
Natl Sci Rev ; 9(7): nwac091, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35832779

RESUMO

Metal-organic frameworks (MOFs) constructed from a rich library of organic struts and metal ions/clusters represent promising candidates for a wide range of applications. The unique structure, porous nature, easy tunability and processability of these materials make them an outstanding class of materials for tackling serious global problems relating to energy and environment. Among them, environmental pollution is one aspect that has increased at an alarming rate in the past decade or so. With rapid urbanization and industrialization, toxic environmental pollutants are constantly released and accumulated leading to serious contamination in water bodies and thereby having adverse effects on human health. Recent studies have shown that many toxic pollutants, as listed by the World Health Organization and the US Environmental Protection Agency, can be selectively detected, captured, sequestered and removed by MOFs from air and aquatic systems. Most of these sensing/capture processes in MOFs are quantifiable and effective for even a trace amount of the targeted chemical species. The functional sites (ligands and metals) play a critical role in such recognition processes and offer an extensive scope of structural tunability for guest (pollutants, toxic entities) recognition. Whereas on the one hand, the underlying mechanisms governing such sensing and capture are important, it is also crucial to identify MOFs that are best suited for commercial applications for the future. In this review article, we provide an overview of the most recent progress in the sensing, capture and removal of various common toxic pollutants, including neutral and ionic, inorganic and organic species, with brief discussions on the mechanism and efficacy of selected MOFs.

4.
Adv Mater ; 33(29): e2101257, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057259

RESUMO

Metal-organic frameworks (MOFs) intrinsically lack fluidity and thus solution processability. Direct synthesis of MOFs exhibiting solution processability like polymers remains challenging but highly sought-after for multitudinous applications. Herein, a one-pot, surfactant-free, and scalable synthesis of highly stable MOF suspensions composed of exceptionally large (average area > 15 000 µm2 ) NUS-8 nanosheets with variable functionalities and excellent solution processability is presented. This is achieved by adding capping molecules during the synthesis, and by judicious controls of precursor concentration and MOF nanosheet-solvent interactions. The resulting 2D NUS-8 nanosheets with variable functionalities exhibit excellent solution processability. As such, relevant monoliths, aero- and xerogels, and large-area textured films with a great homogeneity, controllable thickness, and appreciable mechanical properties can be facilely fabricated. Additionally, from both the molecular- and chip-level it is demonstrated that capacitive sensors integrated with NUS-8 films functionalized with different terminal groups exhibit distinguishable sensing behaviors toward acetone due to their disparate host-guest interactions. It is envisioned that this simple approach will greatly facilitate the integration of MOFs in miniaturized electronic devices and benefit their mass production.

5.
Dalton Trans ; 50(20): 6901-6912, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33913994

RESUMO

Here, using three metal cations (Mg2+, Al3+, and Zr4+) and an excited-state intramolecular proton transfer (ESIPT) active linker, 2,5-dihydroxyterephthalic acid (H2DHT), three luminescent metal-organic frameworks (LMOFs) were obtained. Importantly, their ESIPT-based luminescence originated from the linker was systematically tuned in emission profiles including intensity, emission color, and quantum efficiency in the solution as well as in the solid state, which is largely dependent on the composition and structural characteristics of these three LMOFs. Similar to the free linker, the Mg-based MOF possesses a relatively strong luminescence, the Al-based MOF has moderate luminescence due to the breathing effect, and the Zr-based MOF is very weakly luminescent, mainly caused by the LMCT process. Benefiting from unique emission behaviors of these three LMOFs, we further modulated their ESIPT-based luminescence through the interplay between guest species and components of LMOFs by combining with various photophysical processes, and successfully explored their potential applications as versatile photoluminescent platforms for target-triggered sensory materials, responsive fluorescent hydrogels, and white-light-emitting phosphors.


Assuntos
Luminescência , Estruturas Metalorgânicas , Luz , Prótons , Teoria Quântica
6.
Angew Chem Int Ed Engl ; 60(20): 11318-11325, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33599088

RESUMO

The regulation of permeance and selectivity in membrane systems may allow effective relief of conventional energy-intensive separations. Here, pressure-responsive ultrathin membranes (≈100 nm) fabricated by compositing flexible two-dimensional metal-organic framework nanosheets (MONs) with graphene oxide nanosheets for CO2 separation are reported. By controlling the gas permeation direction to leverage the pressure-responsive phase transition of the MONs, CO2 -induced gate opening and closing behaviors are observed in the resultant membranes, which are accompanied with the sharp increase of CO2 permeance (from 173.8 to 1144 gas permeation units) as well as CO2 /N2 and CO2 /CH4 selectivities (from 4.1 to 22.8 and from 4 to 19.6, respectively). The flexible behaviors and separation mechanism are further elucidated by molecular dynamics simulations. This work establishes the relevance of structural transformation-based framework dynamics chemistry in smart membrane systems.

8.
ACS Appl Mater Interfaces ; 12(32): 36715-36722, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32691586

RESUMO

Interfacial compatibility between metal-organic framework (MOF) films and the underlying substrates determines the integrity of MOF films and their associated functions, and thus it has been gaining growing attention. Herein, we present a comparison of adhesion properties at the chip level of two disparate nickel (Ni)-MOF films, respectively, obtained by direct hydro/solvothermal growth and template-directed conversion approaches. We demonstrate that the on-chip delamination/corrugation of the films obtained by the direct growth approach can be circumvented by adopting the template-directed approach, which enables delicate dissolution of primarily grown nanoflaked nickel hydroxide (Ni(OH)2) films and thus triggers the controllable formation of Ni-MOF films. Successful on-chip conversions of Ni(OH)2 layers to different Ni-MOF thin films with good homogeneity, compactness, and appreciable affinity to the substrates are verified by multiple microscopic and spectroscopic techniques. Notably, the resultant Ni-MOF films do not show delamination even after activation with additional treatments, such as solvent soaking, nitrogen (N2) blowing for 1 h, and scotch-tape tests. As a demonstration of the application of MOF films, a Ni-NDC (NDC stands for 2,6-naphthalenedicarboxylate) MOF-coated sensor exhibits selective detection toward benzene vapor. This study highlights the importance of interfaces between MOF films and substrates and provides new perspectives for integrating MOF films onto microelectronic devices with robust adhesion for practical applications.

9.
Inorg Chem ; 59(13): 9350-9355, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32573215

RESUMO

Metal-organic frameworks (MOFs) are typically synthesized via solvothermal reactions, whose reaction kinetics might be a bottleneck in the scaled-up manufacturing of these materials. Herein, we show that asymmetric cationic site occupancy within a mixed-metal citrate-based MOF-KM3(C6H4O7)(C6H5O7)·xH2O (M = Co, Zn), also known as UTSA-16-can be exploited for improved formation kinetics. Using this strategy, mixed-metal UTSA-16 can be crystallized under significantly milder conditions relative to the parent Co-based one, paving the way for the mass production of this promising material.

10.
ACS Sens ; 5(5): 1474-1481, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32367715

RESUMO

State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.


Assuntos
Estruturas Metalorgânicas , Benzeno , Gases
11.
Angew Chem Int Ed Engl ; 59(27): 11003-11009, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32107860

RESUMO

We report an in situ polymerization strategy to incorporate a thermo-responsive polymer, poly(N-isopropylacrylamide) (PNIPAM), with controlled loadings into the cavity of a mesoporous metal-organic framework (MOF), MIL-101(Cr). The resulting MOF/polymer composites exhibit an unprecedented temperature-triggered water capture and release behavior originating from the thermo-responsive phase transition of the PNIPAM component. This result sheds light on the development of stimuli-responsive porous adsorbent materials for water capture and heat transfer applications under relatively mild operating conditions.

12.
Chem Asian J ; 14(24): 4506-4519, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573139

RESUMO

Metal-organic frameworks (MOFs) have evolved as an exciting class of materials in the domain of porous materials. The unique features of these materials arise from the combined properties of metal ions/clusters and organic struts which form the building blocks of these fascinating architectures. Among other multifarious applications, MOFs have shown tremendous applications as sensory materials for a wide variety of species. The signal transduction induced mechanism in these confined nanospaces generate optical output in response to a particular analyte which can be detected by wide variety of detection techniques. Fluorometric methods of sensing is one of widely studied method over past few decades. MOF-based fluorometric detection is a key research theme developed over the past few years. In this review, we give a brief overview of the recent developments of MOFs as "turn-on" sensors for a wide range of analytes (viz. cations, anions, volatile organic compounds (VOCs), etc.).

13.
Angew Chem Int Ed Engl ; 58(40): 14089-14094, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31270915

RESUMO

Gas sensing technologies for smart cities require miniaturization, cost-effectiveness, low power consumption, and outstanding sensitivity and selectivity. On-chip, tailorable capacitive sensors integrated with metal-organic framework (MOF) films are presented, in which abundant coordinatively unsaturated metal sites are available for gas detection. The in situ growth of homogeneous Mg-MOF-74 films is realized with an appropriate metal-to-ligand ratio. The resultant sensors exhibit selective detection for benzene vapor and carbon dioxide (CO2 ) at room temperature. Postsynthetic modification of Mg-MOF-74 films with ethylenediamine decreases sensitivity toward benzene but increases selectivity to CO2 . The reduced porosity and blocked open metal sites caused by amine coordination account for a deterioration in the sensing performance for benzene (by ca. 60 %). The enhanced sensitivity for CO2 (by ca. 25 %) stems from a tailored amine-CO2 interaction. This study demonstrates the feasibility of tuning gas sensing properties by adjusting MOF-analyte interactions, thereby offering new perspectives for the development of MOF-based sensors.

14.
Chem Commun (Camb) ; 55(32): 4727-4730, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30942786

RESUMO

We herein present MOF-808-Tb nanospheres synthesized by a microwave-assisted approach with post-synthetic modification. The hybrid material exhibits an outstanding lanthanide-based luminescence sensing performance toward acetone vapor and Fe3+ cations in aqueous solution.

15.
Inorg Chem ; 57(21): 13631-13639, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30354141

RESUMO

Differentiation of xylene isomers remains as one of the most important challenges in the chemical industry, mainly due to the similar molecular sizes and boiling points of the three xylene isomers. Fluorescence-based chemical sensors have attracted wide attention due to their high sensitivity and versatile applications. Here, we report a novel fluorescent metal-organic framework named NUS-40, which is able to selectively detect and discriminate o-xylene from other xylene isomers. Suspension of NUS-40 in o-xylene produces a distinct red shift in the fluorescence emission compared to that in either m-xylene or p-xylene. Moreover, the extent of peak shift is dependent on the concentration of o-xylene in xylene isomer mixtures, and the observed linear correlation between fluorescence intensity and o-xylene concentration is beneficial for quantitative detection. The possible mechanism of such responsive fluorescence behavior was investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and vapor sorption experiments. In addition, facile metalation of the porphyrin centers with metal ions provides an additional route to fine-tune the sensing properties.

16.
Chem Rec ; 18(2): 154-164, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28880497

RESUMO

Metal-organic frameworks (MOFs) have experienced a tremendous growth during last few decades as porous crystalline molecular materials. The comprehensive effect of structural diversity, tunability and high surface area makes MOFs suitable for multifarious applications. MOFs can act as potential receptors toward different target components along with ionic species, small molecules, solvents, explosives etc. Anion recognition remains an important phenomena due to its involvement in many chemical and biological processes. Ligand designing, incorporation of appropriate functional groups and post-synthetic modifications are key strategies in MOFs for selective recognition and scavenging of environmentally toxic and detrimental anions (i. e. cyanide, oxo-anions etc.). The main focus of this personal account is on our research towards development and potential applications of MOFs with special emphasis on selective and sensitive anion sensing.

17.
Acc Chem Res ; 50(10): 2457-2469, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28872829

RESUMO

Metal-organic frameworks (MOFs) have evolved to be next-generation utility materials because of their serviceability in a wide variety of applications. Built from organic ligands with multiple binding sites in conjunction with metal ions/clusters, these materials have found profound advantages over their other congeners in the domain of porous materials. The plethora of applications that these materials encompass has motivated material chemists to develop such novel materials, and the catalogue of MOFs is thus ever-escalating. One key feature that MOFs possess is their responsiveness toward incoming guest molecules, resulting in changes in their physical and chemical properties. Such uniqueness generally arises owing to the influenceable ligands and/or metal units that govern the formation of these ordered architectures. The suitable host-guest interactions play an important role in determining the specific responses of these materials and thus find important applications in sensing, catalysis, separation, conduction, etc. In this Account, we focus on the two most relevant applications based on the host-guest interactions that are carried out in our lab, viz., separation and sensing of small molecules. Separation of liquid-phase aromatic hydrocarbons by less energy-intensive adsorption processes has gained attention recently. Because of their tailored structures and functionalized pore surfaces, MOFs have become vital candidates in molecular separation. Prefunctionalization of MOFs by astute choice of ligands and/or metal centers results in targeted separation processes in which the molecular sieving effect plays a crucial role. In this view, separation of C6 and C8 liquid aromatic hydrocarbons, which are essential feedstock in various chemical industries, is one area of research that requires significant attention because of the gruesome separation techniques adopted in such industries. Also, from the environmental perspective, separation of oil/water mixtures demands significant attention because of the hazards of marine oil spillage. We have achieved successful separation of such by careful impregnation of hydrophobic moieties inside the nanochannels of MOFs, resulting in unprecedented efficiency in oil/water separation. Also, recognition of small molecules using optical methods (fluorescence, UV, etc.) has been extended to achieve sensing of various neutral species and anions that are important from environmental point of view. Incorporation of secondary functional groups has been utilized to sense nitroaromatic compounds (NACs) and other small molecules such as H2S, NO, and aromatic phenols. We have also utilized the postfunctionalization strategy via ion exchange to fabricate MOFs for sensing of environmentally toxic and perilous anionic species such as CN- and oxoanions. Our current endeavors to explore the applicability of MOFs in these two significant areas have widened the scope of research, and attempts to fabricate MOFs for real-time applications are underway.

18.
Chem Commun (Camb) ; 53(7): 1253-1256, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28067338

RESUMO

A pure aqueous phase recognition and corresponding detoxification of highly toxic cyanide ions has been achieved by a fluorescent metal-organic framework (MOF). The cyanide detoxification has been shown to be effective even in in vitro studies and the MOF could be recycled to show the same efficiency of detoxification.

19.
Angew Chem Int Ed Engl ; 55(36): 10667-71, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27464784

RESUMO

Two porous hydrogen-bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra-high proton conduction values (σ) 0.75× 10(-2)  S cm(-1) and 1.8×10(-2)  S cm(-1) under humidified conditions. Also, they have very low activation energy values and the highest proton conductivity at ambient conditions (low humidity and at moderate temperature) among porous crystalline materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). These values are not only comparable to the conventionally used proton exchange membranes, such as Nafion used in fuel cell technologies, but is also the highest value reported in organic-based porous architectures. Notably, this report inaugurates the usage of crystalline hydrogen-bonded porous organic frameworks as solid-state proton conducting materials.

20.
Angew Chem Int Ed Engl ; 55(27): 7811-5, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-26855323

RESUMO

A three-dimensional water-stable cationic metal-organic framework (MOF) pillared by a neutral ligand and with Ni(II)  metal nodes has been synthesized employing a rational design approach. Owing to the ordered arrangement of the uncoordinated tetrahedral sulfate (SO4 (2-) ) ions in the channels, the compound has been employed for aqueous-phase ion-exchange applications. The compound exhibits rapid and colorimetric aqueous-phase capture of environmentally toxic oxoanions (with similar geometries) in a selective manner. This system is the first example of a MOF-based system which absorbs both dichromate (Cr2 O7 (2-) ) and permanganate (MnO4 (-) ) ions, with the latter acting as a model for the radioactive contaminant pertechnetate (TcO4 (-) ).


Assuntos
Cromatos/isolamento & purificação , Compostos de Manganês/isolamento & purificação , Estruturas Metalorgânicas/química , Níquel/química , Óxidos/isolamento & purificação , Pertecnetato Tc 99m de Sódio/isolamento & purificação , Poluentes da Água/isolamento & purificação , Adsorção , Ânions/isolamento & purificação , Cátions/química , Modelos Moleculares , Água/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Radioativos da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...