Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 27103-27112, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38051543

RESUMO

Nature's design of biological ion channels that demonstrates efficient gating and selectivity brings to light a very promising model to mimic and design for achieving selective and tunable ion transport. Functionalized nanopores that permit modulation of the pore wall charges are a compelling approach to gain control over the ion transport mechanism through the pores. This makes way for employing a noncovalent supramolecular approach for attaining charge reversal of the MOF pore walls using donor-acceptor pairs that can demonstrate strong charge transfer interactions. Herein, robust Zr4+-based mesoporous MOF-808 was postsynthetically modified into an anion-selective nanochannel (MOF-808-MV) by modification with dicationic viologen-based motifs. Charge modulation and even reversal of the MOF-808-MV pore walls were then explored taking advantage of strong charge transfer interactions between the grafted dicationic viologen acceptor moieties and anionic, π-electron-rich donor guest molecules such as pyranine (PYR) and tetrathiafulvalene tetrabenzoic acid (TTF-TA). Tunability of the MOF pore charge from positive to neutral to negative was achieved via simple methodologies such as diffusion control in case of guest molecule like PYR and by pH modulation for pH-responsive guest like TTF-TA. This results in a concomitant modulation in the selectivity of the nanochannel, rendering it from anion-selective to ambipolar to cation-selective. Furthermore, as a real-time application of this ion channel, Na+ ion conductivity (σ = 3.5 × 10-5 S cm-1) was studied at ambient temperature.

2.
Dermatol Pract Concept ; 13(4)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992388

RESUMO

INTRODUCTION: Severe acute respiratory virus syndrome coronavirus 2 (SARS-CoV-2) was responsible for coronavirus disease (COVID-19) pandemic. As patients recovered from COVID-19 infection, hair loss was increasingly observed as a distressing symptom. METHODS: This was a cross-sectional study of patients with post COVID-19 hair loss between July to December 2021 at a tertiary care center. Detailed history, clinical examination, trichoscopy and biochemical tests were performed and recorded. COVID-19 disease severity was assessed based on duration of COVID-19 infection and place of management. RESULTS: The study included 120 patients with a mean age of 39.6 years. The majority of the patients were females treated at home and had COVID-19 infection for >2 weeks. The mean visual analog scale (VAS) score for stress was 5.25. Vitamin D deficiency was present in 56.7% and low ferritin in 30% of cases. The mean time of onset of hair loss post COVID-19 was 49 days. Patients mainly presented with diffuse hair loss. Trichodynia was present in 15.8% of cases. The degree of hair loss was severe in 55.8% of the subjects. Positive hair pull test was seen in 65% of patients. Most common trichoscopic features included single hair follicles (81.7%) and vellus hair >10% (60%). CONCLUSIONS: The mean time of onset of hair loss post COVID-19 infection was less than 2 months. Majority patients had diffuse pattern and severe degree of hair loss. Trichoscopy can aid in unmasking co-existing patterned hair loss in patients presenting clinically with diffuse hair loss.

3.
Nat Commun ; 14(1): 4508, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495574

RESUMO

In the quest for renewable fuel production, the selective conversion of CO2 to CH4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH4 from CO2. The reported material produces 7.3 mmol g-1 of CH4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.

4.
ACS Appl Mater Interfaces ; 15(23): 27821-27831, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37278439

RESUMO

Exploration of different chemical systems for photocatalytic CO2 reduction by using sunlight en route to the achievement of artificial photosynthesis stems from global warming and the energy crisis. In this work, we have covalently grafted the molecular photosensitizer (PS) [Ru(MBA)(bpy)2]Cl2 (bpy: 2,2'-bipyridine) and the catalyst [Mn(MBA)(CO)3Br] inside the Zr-MOF-808 (Zr-MOF) nanopore postmodified with 2-(5'-methyl-[2,2'-bipyridine]-5-yl)acetic acid (H-MBA) and developed a single integrated system named Zr-MBA-Ru/Mn-MOF for the CO2 reduction reaction (CO2RR). Zr-MBA-Ru/Mn-MOF is found to be active toward CO2-to-CO conversion, with a maximum production of 1027 µmol g-1 after 26 h of reaction having >99% selectivity in the aqueous medium without any additional hole scavenger. The catalyst with direct sunlight in the aqueous medium is equally active for CO production, thus mimicking the natural photosynthetic process. We have performed an in situ diffuse reflectance Fourier transform infrared spectroscopy (FTIR) (DRIFT) study to unveil the electron transfer from the PS to the catalytic center during CO2 reduction by monitoring the changes in the carbonyl stretching frequency in the [Mn(MBA)(CO)3Br] center and correlated with the density functional theory (DFT) calculations. Additionally, we have performed in situ DRIFT spectroscopy to understand the reaction mechanism for the CO2-to-CO conversion.

5.
ACS Appl Mater Interfaces ; 14(43): 49014-49025, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36278376

RESUMO

In recent years, extensive research has been directed toward the successful preparation of nanoscale luminescent thermometers with high sensitivities operative in a broad temperature range. To achieve this goal, we have devised a unique design and facile multistep synthesis of Zr-ctpy-NMOF@TbxEuy compounds by confining Ln-complexes (Ln = Eu3+/Tb3+) into a robust nanoscale Zr-NMOF (MOF-808) via postsynthetic modification. Covalent grafting of 4-(4'-carboxyphenyl)-2,2':6,2″terpyridine ligand (ctpy) with a high triplet state energy and corresponding immobilization of bimetallic Ln3+ ions resulted in yellow light-emitting Zr-ctpy-NMOF@Tb1.66Eu0.14 to achieve a sensitivity of 5.2% K-1 (thermal uncertainty dT < 1 K) operative over a broad temperature range of 25-400 K. To defeat the odds related to the detection of minute temperature changes using luminescent materials, we prepared a white light-emitting Zr-ctpy-NMOF@Tb1.4Eu0.31 that showed temperature-modulated multispectrum chromism where the color drastically changes from green (at 25 K, Q.Y.: 20.21%) to yellowish-green (at 200 K, Q.Y.: 23.13%) to white (at 300 K, Q.Y.: 26.4%) to orange (at 350 K, Q.Y.: 26.93%) and finally red (at 400 K, Q.Y.: 28.2%) with a high energy transfer efficiency of 49.8%, which is further supported by electron-phonon coupling.

6.
ACS Appl Mater Interfaces ; 14(22): 25220-25231, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613366

RESUMO

Insights into developing innovative routes for the stabilization of photogenerated charge-separated states by suppressing charge recombination in photocatalysts is a topic of immense importance. Herein, we report the synthesis of a metal-organic framework (MOF)-based composite where CdS nanoparticles (NPs) are confined inside the nanosized pores of Zr4+-based MOF-808, namely, CdS@MOF-808. Anchoring l-cysteine into the nanospace of MOF-808 via postsynthetic ligand exchange allows the capture of Cd2+ ions from their aqueous solution, which are further utilized for in situ growth of CdS NPs inside the nanosized MOF pores. The formation of CdS@MOF-808 opens up a possibility for visible-light photocatalysis as CdS NPs (1-2 nm) are a well-studied semiconductor system with a band gap of ∼2.6 eV. The confinement of the CdS NPs inside the MOF pores, close to the Zr4+ cluster, opens up a shorter electron transfer route from CdS to the catalytic Zr4+ cluster and shows a high rate of H2 evolution (10.41 mmol g-1 h-1) from water with a loading of 3.56 wt % CdS. In contrast, a similar composite in which CdS NPs are stabilized on the external surface of MOF-808 reveals poor activity (0.15 mmol g-1 h-1). CdS NPs stabilized on the MOF-808 surface show slower and inefficient electron transfer kinetics compared to CdS stabilized inside the nanospace of the MOF, as realized by the transient absorption measurements. Therefore, this work unveils the critical role of stabilizing the photosensitizer NPs in close proximity of the catalytic sites in MOF systems towards developing highly efficient H2 evolution photocatalysts.

7.
Dalton Trans ; 50(37): 13002-13011, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581361

RESUMO

Five isostructural 1D porous coordination polymers (PCPs) with a general formula of {[M(L)(DMF)(H2O)]·1.5H2O}n [M = TbIII (1), EuIII (2), YbIII (3), NdIII (4) and ErIII (5)] have been synthesized using a flexible tripodal organic linker (L) and characterized. TbIII (1) and EuIII (2) PCPs exhibit metal-based green and red emission, respectively, whereas YbIII (3), NdIII (4) and ErIII (5) PCPs show near-infrared (NIR) emission. Doping EuIII in 1 in a precisely controlled stoichiometric amount leads to different mixed lanthanide PCPs, {[Tb1-xEux(L)(DMF)(H2O)]·1.5H2O}n (1a-1f) that show tunable emission including that of bright white light. The PCPs decorated with Lewis basic -O- binding sites make them potential candidates for the binding and selective sensing of traces of CuII ions, and this is illustrated for PCP 2 (limit of detection = 0.69 ± 0.02 ppm). The photoluminescence of 2 can be recovered by the introduction of a chelating ligand ethylenediaminetetraacetic acid (EDTA) without any structural disintegration, indicating the potential of the lanthanide PCPs for future sensing applications.

8.
Inorg Chem ; 59(12): 8251-8258, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32490672

RESUMO

Here, we demonstrate mimicking of photophysical properties of native green fluorescent protein (gfp) by immobilizing the gfp chromophore analogues in nanoscale MOF-808 and further exploring the bioimaging applications. The two virtually nonfluorescent gfp chromophore analogues carrying different functionalities, BDI-AE (COOH/COOMe) and BDI-EE (COOMe/COOMe) were immobilized in nanosized MOF-808 via postsynthetic modification. An 1H NMR and IR study confirms that BDI-AE was coordinated in NMOF-808, whereas BDI-EE was just noncovalently encapsulated. Interestingly, the extremely weakly fluorescent monomers BDI-AE and BDI-EE (QY = 0.01-0.03%, lifetime = 0.01-0.03 ns) showed a 102-fold increase in quantum efficiency with a significantly longer excited-state lifetime (QY = 1.8-5.6%, lifetime 0.89-1.49 ns) after immobilization in the NMOF-808 scaffold. Moreover, BDI-AE@MOF-808 has 4 times higher quantum efficiency as well as longer excited-state lifetime in comparison to BDI-EE@NMOF-808 due to the rigidity imposed in the chromophore upon coordination with Zr4+ in the former case. Further, a cell viability test performed for BDI-AE@NMOF-808 in HeLa cells confirmed the nontoxic nature of the material and, more importantly, bioimaging applications have also been explored successfully.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...