Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7028, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919280

RESUMO

The leishmanin skin test was used for almost a century to detect exposure and immunity to Leishmania, the causative agent of leishmaniasis, a major neglected tropical disease. Due to a lack of antigen used for the intradermal injection, the leishmanin skin test is no longer available. As leishmaniasis control programs are advancing and new vaccines are entering clinical trials, it is essential to re-introduce the leishmanin skin test. Here we establish a Leishmania donovani strain and describe the production, under Good Laboratory Practice conditions, of leishmanin soluble antigen used to induce the leishmanin skin test in animal models of infection and vaccination. Using a mouse model of cutaneous leishmaniasis and a hamster model of visceral leishmaniasis, soluble antigen induces a leishmanin skin test response following infection and vaccination with live attenuated Leishmania major (LmCen-/-). Both the CD4+ and CD8+ T-cells are necessary for the leishmanin skin test response. This study demonstrates the feasibility of large-scale production of leishmanin antigen addressing a major bottleneck for performing the leishmanin skin test in future surveillance and vaccine clinical trials.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Animais , Linfócitos T CD8-Positivos , Antígenos de Protozoários , Leishmaniose Cutânea/prevenção & controle , Testes Cutâneos
2.
NPJ Vaccines ; 7(1): 157, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463228

RESUMO

Leishmaniasis is one of the top neglected tropical diseases with significant morbidity and mortality in low and middle-income countries (LMIC). However, this disease is also spreading in the developed world. Currently, there is a lack of effective strategies to control this disease. Vaccination can be an effective measure to control leishmaniasis and has the potential to achieve disease elimination. Recently, we have generated centrin gene-deleted new world L. mexicana (LmexCen-/-) parasites using CRISPR/Cas9 and showed that they protect mice against a homologous L. mexicana infection that causes cutaneous disease. In this study, we tested whether LmexCen-/- parasites can also protect against visceral leishmaniasis caused by L. donovani in a hamster model. We showed that immunization with LmexCen-/- parasites is safe and does not cause lesions. Furthermore, such immunization conferred protection against visceral leishmaniasis caused by a needle-initiated L. donovani challenge, as indicated by a significant reduction in the parasite burdens in the spleen and liver as well as reduced mortality. Similar control of parasite burden was also observed against a sand fly mediated L. donovani challenge. Importantly, immunization with LmexCen-/- down-regulated the disease promoting cytokines IL-10 and IL-4 and increased pro-inflammatory cytokine IFN-γ resulting in higher IFN-γ/IL-10 and IFN-γ/IL4 ratios compared to non-immunized animals. LmexCen-/- immunization also resulted in long-lasting protection against L. donovani infection. Taken together, our study demonstrates that immunization with LmexCen-/- parasites is safe and efficacious against the Old World visceral leishmaniasis.

3.
Heliyon ; 8(7): e09868, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35847617

RESUMO

Immunotherapeutic strategies against visceral leishmaniasis (VL) are pertinent because of the emergence of resistance against existing chemotherapy, coupled with their toxicity and high costs. Various bioactive components with potential immunomodulatory activity, such as alkaloids, terpenes, saponins, flavonoids obtained primarily from medicinal plants, have been screened against different disease models. Reports suggested that glycans containing terminal ß-galactose can skew host immune response towards Th1 by engaging TLRs. In this study, two synthesized terminal galactose-containing flavones, Quercetin 3-d-galactoside (Q-gal) and Kaempferol 3-O-d-galactoside (K-gal), are profiled in terms of inducing host protective Th1 response in both in vitro & in vivo animal models of experimental VL individually against antimony-resistant & antimony-susceptible Leishmania donovani. Further, we explored that both Q-gal and K-gal induce TLR4 mediated Th1 response to encounter VL. Molecular docking analysis also suggested strong interaction with TLR4 for both the galactosides, with a slightly better binding potential towards Q-gal. Treatment with both Q-gal and K-gal showed significant antileishmanial efficacy. Each considerably diminished the liver and splenic parasite burden 60 days after post-infection (>90% in AG83 infected mice and >87% in GE1F8R infected mice) when administered at a 5 mg/kg/day body-weight dose for ten consecutive days. However, the treatments failed to clear the parasites in the TLR4 deficient C3H/HeJ mice. Treatment with these compounds favors the elevation of TLR4 dependent host protective Th1 cytokines and suppression of disease-promoting IL-10. Q-gal and K-gal also triggered sufficient ROS generation in macrophages to kill intracellular parasites directly.

4.
Front Immunol ; 13: 864031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419001

RESUMO

Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene-deleted parasite strain (LmCen-/- ) that induced protection against homologous and heterologous challenges. We demonstrated that the protection is mediated by IFN (Interferon) γ-secreting CD4+ T-effector cells and multifunctional T cells, which is analogous to leishmanization. In addition, in a leishmanization model, skin tissue-resident memory T (TRM) cells were also shown to be crucial for host protection. In this study, we evaluated the generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. We show that immunization with LmCen-/- generated skin CD4+ TRM cells and is supported by the induction of cytokines and chemokines essential for their production and survival similar to leishmanization. Following challenge with wild-type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice. Furthermore, upon challenge, CD4+ TRM cells induce higher levels of IFNγ and Granzyme B in the immunized and leishmanized mice than in non-immunized mice. Taken together, our studies demonstrate that the genetically modified live attenuated LmCen-/- vaccine generates functional CD4+ skin TRM cells, similar to leishmanization, that may play a crucial role in host protection along with effector T cells as shown in our previous study.


Assuntos
Leishmania major , Vacinas contra Leishmaniose , Parasitos , Animais , Imunidade , Interferon gama , Vacinas contra Leishmaniose/genética , Células T de Memória , Camundongos , Pele , Combinação Trimetoprima e Sulfametoxazol
5.
NPJ Vaccines ; 7(1): 32, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236861

RESUMO

Leishmaniasis is a neglected protozoan disease affecting over 12 million people globally with no approved vaccines for human use. New World cutaneous leishmaniasis (CL) caused by L. mexicana is characterized by the development of chronic non-healing skin lesions. Using the CRISPR/Cas9 technique, we have generated live attenuated centrin knockout L. mexicana (LmexCen-/-) parasites. Centrin is a cytoskeletal protein important for cellular division in eukaryotes and, in Leishmania, is required only for intracellular amastigote replication. We have investigated the safety and immunogenicity characteristics of LmexCen-/- parasites by evaluating their survival and the cytokine production in bone-marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) in vitro. Our data shows that LmexCen-/- amastigotes present a growth defect, which results in significantly lower parasitic burdens and increased protective cytokine production in infected BMDMs and BMDCs, compared to the wild type (WT) parasites. We have also determined the safety and efficacy of LmexCen-/- in vivo using experimental murine models of L. mexicana. We demonstrate that LmexCen-/- parasites are safe and do not cause lesions in susceptible mouse models. Immunization with LmexCen-/- is also efficacious against challenge with WT L. mexicana parasites in genetically different BALB/c and C57BL/6 mouse models. Vaccinated mice did not develop cutaneous lesions, displayed protective immunity, and showed significantly lower parasitic burdens at the infection site and draining lymph nodes compared to the control group. Overall, we demonstrate that LmexCen-/- parasites are safe and efficacious against New World cutaneous leishmaniasis in pre-clinical models.

6.
PLoS Negl Trop Dis ; 16(2): e0010224, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192633

RESUMO

BACKGROUND: Neutrophils are involved in the initial host responses to pathogens. Neutrophils can activate T cell responses either independently or through indirect involvement of Dendritic cells (DCs). Recently we have demonstrated direct neutrophil-T cell interactions that initiate adaptive immune responses following immunization with live attenuated Leishmania donovani centrin deleted parasite vaccine (LdCen-/-). However, neutrophil-DC interactions in T cell priming in vaccine immunity in general are not known. In this study we evaluated the interaction between neutrophils and DCs during LdCen-/- infection and compared with wild type parasite (LdWT) both in vitro and in vivo. METHODOLOGY/FINDINGS: LdCen-/- parasite induced increased expression of CCL3 in neutrophils caused higher recruitment of DCs capable of inducing a strong proinflammatory response and elevated co-stimulatory molecule expression compared to LdWT infection. To further illustrate neutrophil-DCs interactions in vivo, we infected LYS-eGFP mice with red fluorescent LdWT/LdCen-/- parasites and sort selected DCs that engulfed the neutrophil containing parasites or DCs that acquired the parasites directly in the ear draining lymph nodes (dLN) 5d post infection. The DCs predominantly acquired the parasites by phagocytosing infected neutrophils. Specifically, DCs containing LdCen-/- parasitized neutrophils exhibited a proinflammatory phenotype, increased expression of costimulatory molecules and initiated higher CD4+T cell priming ex-vivo. Notably, potent DC activation occurred when LdCen-/- parasites were acquired indirectly via engulfment of parasitized neutrophils compared to direct engulfment of LdCen-/- parasites by DCs. Neutrophil depletion in LdCen-/- infected mice significantly abrogated expression of CCL3 resulting in decreased DC recruitment in ear dLN. This event led to poor CD4+Th1 cell priming ex vivo that correlated with attenuated Tbet expression in ear dLN derived CD4+ T cells in vivo. CONCLUSIONS: Collectively, LdCen-/- containing neutrophils phagocytized by DC markedly influence the phenotype and antigen presenting capacity of DCs early on and thus play an immune-regulatory role in shaping vaccine induced host protective response.


Assuntos
Leishmania donovani , Vacinas contra Leishmaniose , Leishmaniose Visceral , Animais , Comunicação Celular , Células Dendríticas , Leishmania donovani/fisiologia , Leishmaniose Visceral/parasitologia , Camundongos , Neutrófilos , Vacinas Atenuadas
7.
Commun Biol ; 4(1): 929, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330999

RESUMO

Visceral Leishmaniasis (VL), a potentially fatal disease is caused by Leishmania donovani parasites with no vaccine available. Here we produced a dermotropic live attenuated centrin gene deleted Leishmania major (LmCen-/-) vaccine under Good Laboratory Practices and demonstrated that a single intradermal injection confers robust and durable protection against lethal VL transmitted naturally via bites of L. donovani-infected sand flies and prevents mortality. Surprisingly, immunogenicity characteristics of LmCen-/- parasites revealed activation of common immune pathways like L. major wild type parasites. Spleen cells from LmCen-/- immunized and L. donovani challenged hamsters produced significantly higher Th1-associated cytokines including IFN-γ, TNF-α, and reduced expression of the anti-inflammatory cytokines like IL-10, IL-21, compared to non-immunized challenged animals. PBMCs, isolated from healthy people from non-endemic region, upon LmCen-/- infection also induced more IFN-γ compared to IL-10, consistent with our immunogenicity data in LmCen-/- immunized hamsters. This study demonstrates that the LmCen-/- parasites are safe and efficacious against VL and is a strong candidate vaccine to be tested in a human clinical trial.


Assuntos
Deleção de Genes , Genes de Protozoários , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/prevenção & controle , Leishmania donovani/genética , Leishmaniose Visceral/imunologia , Proteínas de Protozoários , Vacinas Atenuadas/imunologia
8.
J Immunol ; 205(12): 3333-3347, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33177159

RESUMO

No licensed vaccine exists against visceral leishmaniasis (VL), a disease caused by the Leishmania donovani parasite. We have previously reported both macrophages and dendritic cells play important role in the protection induced by a live attenuated centrin gene-deleted L. donovani (LdCen-/- ) parasite vaccine. The role of neutrophils in orchestrating the initial innate response to pathogens is widely recognized. To investigate the early interaction of LdCen-/- with neutrophils, we immunized mice intradermally in the ear pinna with LdCen-/- Compared with LdWT infection, LdCen-/- parasites induced higher recruitment of neutrophils to the ear dermis and ear draining lymph nodes (dLN) as early as 6-18 h after immunization, which were predominantly proinflammatory in nature. Neutrophils from ear dLN of LdCen-/- -immunized mice exhibited heightened expression of costimulatory molecules and attenuated expression of coinhibitory molecules necessary for higher T cell activation. Further phenotypic characterization revealed heterogeneous neutrophil populations containing Nα and Nß subtypes in the ear dLN. Of the two, the parasitized Nα subset from LdCen-/- -immunized mice exhibited much stronger Ag-specific CD4+ T cell proliferation ex vivo. Adoptive transfer of neutrophils bearing LdCen-/- parasites induced an increased Th1 response in naive mice. Importantly, neutrophil depletion significantly abrogated Ag-specific CD4+ T cell proliferation in LdCen-/- -immunized mice and impaired protection against virulent challenge. Conversely, replenishing of neutrophils significantly restored the LdCen-/- -induced host-protective response. These results suggest that neutrophils are indispensable for protective immunity induced by LdCen-/- parasite vaccine.


Assuntos
Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/prevenção & controle , Ativação Linfocitária , Infiltração de Neutrófilos , Neutrófilos/imunologia , Células Th1/imunologia , Animais , Feminino , Leishmania donovani/genética , Vacinas contra Leishmaniose/genética , Leishmaniose Visceral/genética , Leishmaniose Visceral/imunologia , Camundongos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
9.
Cell Rep ; 33(4): 108317, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113362

RESUMO

Hematophagous vectors lacerate host skin and capillaries to acquire a blood meal, resulting in leakage of red blood cells (RBCs) and inflammation. Here, we show that heme oxygenase-1 (HO-1), a pleiotropic cytoprotective isoenzyme that mitigates heme-mediated tissue damage, is induced after bites of sand flies, mosquitoes, and ticks. Further, we demonstrate that erythrophagocytosis by macrophages, including a skin-residing CD163+CD91+ professional iron-recycling subpopulation, produces HO-1 after bites. Importantly, we establish that global deletion or transient inhibition of HO-1 in mice increases inflammation and pathology following Leishmania-infected sand fly bites without affecting parasite number, whereas CO, an end product of the HO-1 enzymatic reaction, suppresses skin inflammation. This indicates that HO-1 induction by blood-feeding sand flies promotes tolerance to Leishmania infection. Collectively, our data demonstrate that HO-1 induction through erythrophagocytosis is a universal mechanism that regulates skin inflammation following blood feeding by arthropods, thus promoting early-stage disease tolerance to vector-borne pathogens.


Assuntos
Dermatite/enzimologia , Heme Oxigenase-1/biossíntese , Mordeduras e Picadas de Insetos/enzimologia , Doenças Transmitidas por Vetores/enzimologia , Doenças Transmitidas por Vetores/patologia , Animais , Artrópodes , Culicidae , Dermatite/patologia , Feminino , Mordeduras e Picadas de Insetos/patologia , Leishmania , Leishmaniose/enzimologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Commun ; 11(1): 3461, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651371

RESUMO

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Leishmania major/genética , Leishmania major/patogenicidade , Vacinas Atenuadas/uso terapêutico , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Dexametasona/farmacologia , Feminino , Citometria de Fluxo , Edição de Genes , Engenharia Genética , Humanos , Terapia de Imunossupressão , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Psychodidae/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Cell Host Microbe ; 23(1): 134-143.e6, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29290574

RESUMO

Leishmania donovani parasites are the cause of visceral leishmaniasis and are transmitted by bites from phlebotomine sand flies. A prominent feature of vector-transmitted Leishmania is the persistence of neutrophils at bite sites, where they protect captured parasites, leading to enhanced disease. Here, we demonstrate that gut microbes from the sand fly are egested into host skin alongside Leishmania parasites. The egested microbes trigger the inflammasome, leading to a rapid production of interleukin-1ß (IL-1ß), which sustains neutrophil infiltration. Reducing midgut microbiota by pretreatment of Leishmania-infected sand flies with antibiotics or neutralizing the effect of IL-1ß in bitten mice abrogates neutrophil recruitment. These early events are associated with impairment of parasite visceralization, indicating that both gut microbiota and IL-1ß are important for the establishment of Leishmania infections. Considering that arthropods harbor a rich microbiota, its potential egestion after bites may be a shared mechanism that contributes to severity of vector-borne disease.


Assuntos
Microbioma Gastrointestinal/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/transmissão , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Psychodidae/parasitologia , Animais , Antiparasitários/farmacologia , Cricetinae , Feminino , Mordeduras e Picadas de Insetos/parasitologia , Insetos Vetores/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia
12.
J Immunol ; 200(1): 163-176, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187586

RESUMO

No vaccine exists against visceral leishmaniasis. To develop effective vaccines, we have previously reported protective role of live attenuated centrin gene-deleted Leishmania donovani (LdCen-/- ) parasites through induction of Th1 type immune response in mice, hamsters, and dogs. In this study, we specifically explored the role of Th17 cells in LdCen-/- -induced host protection in mice. Our results showed that compared with wild-type L. donovani infection, LdCen-/- parasites induce significantly higher expression of Th17 differentiation cytokines in splenic dendritic cells. There was also induction of IL-17 and its promoting cytokines in total splenocytes and in both CD4 and CD8 T cells following immunization with LdCen-/- Upon challenge with wild-type parasites, IL-17 and its differentiating cytokines were significantly higher in LdCen-/- -immunized mice compared with nonimmunized mice that resulted in parasite control. Alongside IL-17 induction, we observed induction of IFN-γ-producing Th1 cells as reported earlier. However, Th17 cells are generated before Th1 cells. Neutralization of either IL-17 or IFN-γ abrogated LdCen-/- -induced host protection further confirming the essential role of Th17 along with Th1 cytokines in host protection. Treatment with recombinant IL-23, which is required for stabilization and maintenance of IL-17, heightened Th17, and Tc17 responses in immunized mice splenocytes. In contrast, Th17 response was absent in immunized IL-23R-/- mice that failed to induce protection upon virulent Leishmania challenge suggesting that IL-23 plays an essential role in IL-17-mediated protection by LdCen-/- parasites. This study unveiled the role of IL-23-dependent IL-17 induction in LdCen-/- parasite-induced immunity and subsequent protection against visceral leishmaniasis.


Assuntos
Interleucina-17/metabolismo , Interleucina-23/metabolismo , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Animais Geneticamente Modificados , Feminino , Humanos , Leishmania donovani/genética , Vacinas contra Leishmaniose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Protozoários/genética , Receptores de Interleucina/genética , Células Th1/parasitologia , Células Th17/parasitologia , Vacinas Atenuadas/imunologia
13.
Exp Parasitol ; 175: 8-20, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28174102

RESUMO

In vitro and in vivo anti-leishmanial efficacy of copper salisylaldoxime (CuSAL), a transition metal complex, was evaluated and the underlying mechanism was studied. In vitro studies revealed that 30 µM of CuSAL causes 96% reduction in parasite burden in infected macrophages. CuSAL is least toxic in host cells. A dose of 5 mg/kg bodyweight per mice on alternate days (5 doses) gives ∼97% protection in both liver and spleen. Moreover, CuSAL potentially inhibits the catalytic activity of LdTOPILS and causes apoptosis of Leishmania parasites through induction of intracellular ROS generation and activation of caspase-like proteases. Interestingly, CuSAL does not inhibit the catalytic activity of human topoisomerase I. The present study illuminated that CuSAL, has potent anti-leishmanial activity, which selectively targets LdTOPILS; and is a safe for human. Therefore, this compound might be highly promising candidate to develop the rational approaches for chemotherapy of human leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Complexos de Coordenação/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Oximas/farmacologia , Animais , Antiprotozoários/uso terapêutico , Apoptose , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/uso terapêutico , Fragmentação do DNA , Leishmania donovani/enzimologia , Leishmania donovani/crescimento & desenvolvimento , Fígado/parasitologia , Fígado/fisiopatologia , Testes de Função Hepática , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Oximas/uso terapêutico , Espécies Reativas de Oxigênio/análise , Baço/parasitologia , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico
14.
Eur J Immunol ; 42(8): 2087-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22622993

RESUMO

Resistance to murine visceral leishmaniasis (VL) correlates with the development of an IFN-γ predominant immune response. Beta1,4-galactose terminal glycans are potent inducers of IFN-γ. Here, we demonstrate the efficacy of a 29 kDa ß1,4-galactose terminal glycoprotein (GP29) of Leishmania donovani (LD) in an in vitro macrophage model and an in vivo mouse model of VL. GP29 induced splenic macrophages to release NO and ROS in appreciable amounts that resulted in effective parasite clearance from macrophages. This was associated with the toll-like receptor (TLR)-4 mediated IL-12 induction and inhibition of TLR2-mediated IL-10 production. Two subcutaneous injections of GP29 at fortnightly intervals resulted in dominant IL-12-mediated IFN-γ production and 100% animals were protected against a subsequent challenge with virulent LD parasites. Vaccinated mice showed a reversal of T-cell anergy, significantly elevated expression of iNOS and a type-1 IgG subclass response. Moreover, vaccinated mice downregulated arginase1 and IL-10 expression but did not alter IL-4 expression. The IFN-γ/IL-10 ratio regulated the intensity of the protective immune response. Experiments with IFN-γ and IL-10 knockout mice reiterated the role IL-10 and IFN-γ play in disease progression or resolution in the murine model of VL.


Assuntos
Glicoproteínas/imunologia , Interferon gama/imunologia , Interleucina-10/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/prevenção & controle , Animais , Formação de Anticorpos , Arginase/biossíntese , Regulação para Baixo , Imunização , Imunoglobulina G/biossíntese , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-10/biossíntese , Interleucina-10/genética , Interleucina-12/biossíntese , Interleucina-12/metabolismo , Interleucina-4/biossíntese , Leishmania donovani/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Proteínas de Protozoários/imunologia , Espécies Reativas de Oxigênio , Equilíbrio Th1-Th2 , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
15.
PLoS Pathog ; 8(4): e1002646, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511870

RESUMO

NKT cells play an important role in autoimmune diseases, tumor surveillance, and infectious diseases, providing in most cases protection against infection. NKT cells are reactive to CD1d presented glycolipid antigens. They can modulate immune responses by promoting the secretion of type 1, type 2, or immune regulatory cytokines. Pathogen-derived signals to dendritic cells mediated via Toll like Receptors (TLR) can be modulated by activated invariant Natural Killer T (iNKT) cells. The terminal ß-(1-4)-galactose residues of glycans can modulate host responsiveness in a T helper type-1 direction via IFN-γ and TLRs. We have attempted to develop a defined immunotherapeutic, based on the cooperative action of a TLR ligand and iNKT cell using a mouse model of visceral leishmaniasis. We evaluated the anti-Leishmania immune responses and the protective efficacy of the ß-(1-4)-galactose terminal NKT cell ligand glycosphingophospholipid (GSPL) antigen of L. donovani parasites. Our results suggest that TLR4 can function as an upstream sensor for GSPL and provoke intracellular inflammatory signaling necessary for parasite killing. Treatment with GSPL was able to induce a strong effective T cell response that contributed to effective control of acute parasite burden and led to undetectable parasite persistence in the infected animals. These studies for the first time demonstrate the interactions between a TLR ligand and iNKT cell activation in visceral leishmaniasis immunotherapeutic.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Protozoários/farmacologia , Glicoesfingolipídeos/farmacologia , Imunoterapia/métodos , Leishmania donovani/imunologia , Leishmaniose Visceral/terapia , Células T Matadoras Naturais/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Apresentação de Antígeno/genética , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Cricetinae , Glicoesfingolipídeos/genética , Glicoesfingolipídeos/imunologia , Glicoesfingolipídeos/metabolismo , Leishmania donovani/metabolismo , Leishmaniose Visceral/genética , Leishmaniose Visceral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células T Matadoras Naturais/metabolismo , Polissacarídeos/genética , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
16.
J Antimicrob Chemother ; 67(4): 910-20, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22258930

RESUMO

OBJECTIVES: The aim of this study was to investigate and characterize the efficacy of asiaticoside in an experimental model of visceral leishmaniasis caused by antimony-susceptible (AG83) and -resistant (GE1F8R and K39) Leishmania donovani. METHODS: The effect of asiaticoside was evaluated by microscopic counting of intracellular amastigotes in cultured macrophages stained with Giemsa. The antileishmanial effect of the compounds was assessed in infected BALB/c mice by estimation of splenic and liver parasite burdens in Leishman Donovan units. Cytokines were measured by real-time PCR and ELISA. Intracellular tumour necrosis factor-α (TNF-α) was measured by fluorescence-activated cell sorting. Nitric oxide was measured by the Griess reaction. RESULTS: Besides effectively inhibiting in vitro replication of the parasite within macrophages, asiaticoside treatment resulted in almost complete clearance of the liver and splenic parasite burden when administered at a dose of 5 mg/kg × 10 starting on day +30 of challenge with antimony-susceptible (AG83) and -resistant (GE1F8R and K39) L. donovani. Asiaticoside treatment was associated with a switch in the host from a Th2- to a Th1-type immune response accompanied by the induction of TNF-α-mediated nitric oxide production, all of which are important elements for macrophage function in antileishmanial defence mechanisms. CONCLUSIONS: These results suggest that oral therapy with asiaticoside shows promising antileishmanial efficacy in animals infected by antimony-susceptible (AG83) and -resistant (GE1F8R and K39) L. donovani.


Assuntos
Antiprotozoários/administração & dosagem , Leishmania donovani/imunologia , Leishmaniose Visceral/tratamento farmacológico , Óxido Nítrico/metabolismo , Triterpenos/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antimônio/farmacologia , Antiprotozoários/farmacologia , Modelos Animais de Doenças , Resistência a Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Fígado/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia , Óxido Nítrico/imunologia , Reação em Cadeia da Polimerase , Baço/parasitologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia
17.
Eur J Immunol ; 41(5): 1376-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21425159

RESUMO

NKT cells respond to presentation of specific glycolipids with release of both Th1- and Th2-type cytokines. Leishmania donovani (LD)-infected splenic macrophages (sMϕ(I)) and bone marrow-derived dendritic cells (BMDC(I)) failed to activate NKT cells in response to α-galactosyl ceramide (α-GalCer). The defective antigen presentation could be corrected by treating the cells with the immunostimulating glycosphingophospholipid (GSPL) of LD parasites. In vitro pulsing of BMDC(I) or sMϕ(I) with GSPL, caused the activation of the Vα14(+) CD1d1-specific NKT cell hybridoma DN32.D3. Localization of MHC II and CD1d molecules to membrane lipid rafts has been suggested to play an important role in antigen presentation. Confocal analysis clearly demonstrated that LD infection changed the pattern of CD1d distribution to the non-lipid raft regions and this change could be reversed by GSPL treatment. Isoelectric focusing gel shift assay indicated that GSPL binds to CD1d. GSPL-treated but not untreated BMDC(I) formed immune synapses with NKT cells and this was associated with calcium mobilization. In conclusion, GSPL treatment was associated with modification of BMDC(I)/sMϕ(I) lipid raft structure, which is a site for immune regulation.


Assuntos
Apresentação de Antígeno , Antígenos CD1d/metabolismo , Glicoesfingolipídeos/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Microdomínios da Membrana/imunologia , Animais , Western Blotting , Cálcio/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Cricetinae , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Imunofluorescência , Galactosilceramidas/imunologia , Sinapses Imunológicas , Focalização Isoelétrica , Leishmaniose Visceral/parasitologia , Ativação Linfocitária , Macrófagos/metabolismo , Camundongos , Células T Matadoras Naturais/imunologia
18.
Glycoconj J ; 26(6): 663-73, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19005752

RESUMO

As compared to cutaneous leishmaniasis, vaccination against visceral leishmaniasis (VL) has received limited attention. In this study, we demonstrate for the first time that an UDP-Galactose: N-acetylglucosamine beta 1-4 galactosyltransferase (GenBank Accession No. EF159943) expressing attenuated LD clonal population (A-LD) is able to confer protection against the experimental challenge with the virulent LD AG83 parasite. A-LD was also effective in established leishmania infection. The vaccinated animals showed both cell mediated (in vitro T-cell proliferation, and DTH response) and humoral responses (Th1 type). These results demonstrate the potential of the attenuated clones as an immunotherapeutic and immunoprophylactic agent against visceral leishmaniasis.


Assuntos
Antígenos de Protozoários/imunologia , Galactosiltransferases/imunologia , Leishmania donovani/enzimologia , Leishmania donovani/imunologia , Leishmaniose Visceral/prevenção & controle , Vacinas Protozoárias/imunologia , Animais , Formação de Anticorpos/imunologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Imunidade Celular/imunologia , Células de Kupffer/metabolismo , Células de Kupffer/parasitologia , Leishmaniose Visceral/imunologia , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Baço/parasitologia , Linfócitos T/citologia , Linfócitos T/imunologia
19.
J Mol Biol ; 381(5): 1224-37, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18602926

RESUMO

Glutamyl-queuosine tRNA(Asp) synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNA(Asp). Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNA(Glu), Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3' accepting end of the cognate tRNA(Glu), Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNA(Asp). In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS.Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNA(Asp) among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNA(Asp) that determine recognition by Glu-Q-RS. The analyses made on tRNA(Asp) and tRNA(Asn) show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.


Assuntos
Aminoacil-tRNA Sintetases/química , Anticódon/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Ácido Glutâmico/química , Nucleosídeo Q/química , RNA de Transferência de Ácido Aspártico/química , Sequências Reguladoras de Ácido Ribonucleico/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Catálise , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , RNA de Transferência de Ácido Aspártico/genética , Thermus thermophilus/enzimologia
20.
Mol Biochem Parasitol ; 159(2): 121-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18405984

RESUMO

Surface antigens on Leishmania promastigotes and infected macrophages are obvious targets in immunoprophylaxis for leishmanial infection. The glycophosphosphingolipid (GSPL) antigen isolated from Leishmania donovani surface membrane was recognized by sera from patients with visceral leishmaniasis. GSPL was also expressed on the membrane of parasite-infected macrophages. The effect of GSPL on the production of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) was studied using the macrophage cell line J774.1. In addition, induction of IFNgamma, IL4, IL10, IL12 secretion in presence of GSPL was investigated in PBMC from normal individuals. ROS and RNI in addition to IFNgamma and IL12 were induced by GSPL. Though there was a moderate induction of IL10, there was very little induction of the Th2 cytokine IL4. GSPL also induced blood cells to proliferate. The data suggests that this functionally important antigen of L. donovani may be used as a candidate vaccine.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Esfingolipídeos/imunologia , Animais , Linhagem Celular , Membrana Celular/química , Proliferação de Células , Citocinas/biossíntese , Humanos , Leucócitos Mononucleares/imunologia , Macrófagos/parasitologia , Camundongos , Espécies Reativas de Nitrogênio/biossíntese , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...