Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0296109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743696

RESUMO

Colistin resistance is a global concern warning for a one health approach to combat the challenge. Colistin resistant E. coli and their resistance determinants are widely distributed in the environment, and rats could be a potential source of these isolates and resistant determinants to a diverse environmental setting. This study was aimed to determine the presence of colistin resistant E. coli (CREC) in wild rats, their antimicrobial resistance (AMR) phenotypes, and genotypic analysis of mcr-1 CREC through whole genome sequencing (WGS). A total of 39 rats were examined and CREC was isolated from their fecal pellets onto MacConkey agar containing colistin sulfate (1 µg/ mL). AMR of the CREC was determined by disc diffusion and broth microdilution was employed to determine MIC to colistin sulfate. CREC were screened for mcr genes (mcr-1 to mcr-8) and phylogenetic grouping by PCR. Finally, WGS of one mcr-1 CREC was performed to explore its genetic characteristics especially resistomes and virulence determinants. 43.59% of the rats carried CREC with one (2.56%) of them carrying CREC with mcr-1 gene among the mcr genes examined. Examination of seventeen (17) isolates from the CREC positive rats (n = 17) revealed that majority of them belonging to the pathogenic phylogroup D (52.94%) and B2 (11.76%). 58.82% of the CREC were MDR on disc diffusion test. Shockingly, the mcr-1 CREC showed phenotypic resistance to 16 antimicrobials of 8 different classes and carried the ARGs in its genome. The mcr-1 gene was located on a 60 kb IncI2 plasmid. On the other hand, ARGs related to aminoglycosides, phenicols, sulfonamides, tetracyclines and trimethoprims were located on a 288 kb mega-plasmid separately. The mcr-1 CREC carried 58 virulence genes including genes related to adhesion, colonization, biofilm formation, hemolysis and immune-evasion. The isolate belonged to ST224 and closely related to E. coli from different sources including UPEC clinical isolates from human based on cgMLST analysis. The current research indicates that rats might be a possible source of CREC, and the presence of mcr-1 and other ARGs on plasmid increases the risk of ARGs spreading and endangering human health and other environmental components through this infamous pest.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Animais , Colistina/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Ratos , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Bangladesh , Sequenciamento Completo do Genoma/métodos , Filogenia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Animais Selvagens/microbiologia , Fezes/microbiologia
2.
Int J Food Microbiol ; 388: 110065, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610233

RESUMO

Poultry meat is considered as a potential source of colistin resistant Escherichia coli (CREC). This study aimed to determine the prevalence and characteristics of CREC in broiler meat and ascertain their possible zoonotic potential(s). Broiler meat (n = 104) comprising 26 of each of the thigh, breast, liver, and proventriculus-gizzard was purchased from the retail outlets, Bangladesh. CREC was isolated from the meat samples on MacConkey agar plates containing colistin sulfate followed by PCR confirmation, mcr subtyping (mcr-1 to mcr-5), phylogenetic grouping and detailed molecular characterization through whole genome sequencing (WGS). Antimicrobial resistance of the CREC isolates were evaluated by disc diffusion method and MIC (minimum inhibitory concentration) of colistin sulfate was determined by broth microdilution. The investigation revealed 58 (55.77 %) of 104 samples as positive for CREC, and 53 (91.38 %) of CREC isolates carried mcr-1 gene with no other mcr subtypes evident. Most of the CREC belonged to commensal E. coli (66.04 %) with some pathogenic phylotypes (33.96 %) based on dichotomous decision tree. All the mcr-1 CREC isolates were multidrug-resistant (MDR) and had MICs of 4-8 µg/mL colistin sulfate. WGS of a commensal MDR mcr-1 CREC strain 1ChBEc2mcr revealed as a potential human pathogen belonging to ST162 that harbored 60 virulence factors associated genes (VFGs). The mcr-1 gene in 1ChBEc2mcr genome was located on a plasmid (p1ChBEc2mcr) and showed nucleotide similarities (>95 %) to another plasmid reported from human E. coli in Bangladesh. Beyond mcr-1 gene, this plasmid (p1ChBEc2mcr) also harbored genes related to aminoglycoside, beta-lactams, macrolides, and tetracycline resistance. Presence of similar mcr-1 carrying plasmids in broiler and human CREC denotes a threat of possibly human to avian (broiler) or vice-versa transfer of mcr-1 CREC through close contact as prevailing in the retail outlets of Bangladesh.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Animais , Colistina/farmacologia , Proteínas de Escherichia coli/genética , Filogenia , Bangladesh , Galinhas/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Plasmídeos , Carne/análise , Testes de Sensibilidade Microbiana
3.
Environ Sci Pollut Res Int ; 28(24): 30551-30572, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33905059

RESUMO

Agricultural soil acts as a source and sink of important greenhouse gases (GHGs) like methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2). Rice paddies have been a major concern to scientific community, because they produce the threatening and long-lasting GHGs mainly CH4 and N2O. Around 30% and 11% of global agricultural CH4 and N2O, respectively, emitted from rice fields. Thus, it is urgent to concurrently quantify the fluxes of CH4 and N2O to improve understanding of both the gases from rice fields and to develop mitigation strategies for upcoming climate change reduction. An effort is being made in this review to discuss exclusively the emission of CH4 and N2O under normal and controlled conditions in different locations of India and also addresses the current synthesis of available data on how field and crop management activities influence CH4 and N2O emissions in rice fields. Making changes to conventional crop management regimes could have a significant impact on reducing GHG emissions from rice field. Environmental and agricultural factors related to soil could be easily altered by management practices. So, knowing the mechanism of CH4 and N2O production and release in the rice field and factors controlling the emissions is fundamental to develop well-organized strategies to reduce emissions from rice cultivated soil. This will help the regulatory bodies or policy makers to formulate adequate policies for agricultural farmers to refine the GHG emissions as well as minimize the global climate change.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Dióxido de Carbono/análise , Índia , Metano/análise , Óxido Nitroso/análise , Solo
4.
Environ Sci Pollut Res Int ; 28(6): 6267-6288, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387315

RESUMO

Coronavirus disease 2019 (COVID-19) has emerged as a significant public health emergency in recent times. It is a respiratory illness caused by the novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was initially reported in late December 2019. In a span of 6 months, this pandemic spread across the globe leading to high morbidity and mortality rates. Soon after the identification of the causative virus, questions concerning the impact of environmental factors on the dissemination and transmission of the virus, its persistence in environmental matrices, and infectivity potential begin to emerge. As the environmental factors could have far-reaching consequences on infection dissemination and severity, it is essential to understand the linkage between these factors and the COVID-19 outbreak. In order to improve our current understanding over this topic, the present article summarizes topical and substantial observations made regarding the influences of abiotic environmental factors such as climate, temperature, humidity, wind speed, air, and water quality, solid surfaces/interfaces, frozen food, and biotic factors like age, sex, gender, blood type, population density, behavioural characteristics, etc. on the transmission, persistence, and infectivity of this newly recognized SARS-CoV-2 virus. Further, the potential pathways of virus transmission that could pose risk to population health have been discussed, and the critical areas have been identified which merits urgent research for the assessment and management of the COVID-19 outbreak. Where possible, the knowledge gaps requiring further investigation have been highlighted.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Umidade , Pandemias , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...