Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 624: 1082-1094, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625523

RESUMO

This study employed a UV-A/visible/TiO2 system to investigate the degradation of pemetrexed, an antifolate agent used in chemotherapy. The laboratory-scale method employed a photostability chamber that could be used to study multiple samples. Reversed-phase HPLC coupled with high-resolution ESI-LTQ-Orbitrap mass spectrometry was used to determine the transformation products (TPs) of PEME. Based on the identified TPs and existing chemical knowledge, the mechanism of degradation of the target compound was proposed. Concentrations were monitored as a function of time, and the degradation kinetics were compared. The structures of seven TPs, four of which have not been described to date, were proposed. Most of the TPs stemmed from OH radical additions to the dihydropyrrole moiety and oxidative decarboxylation of the glutamate residue. Based on the elucidated structures, a computational toxicity assessment was performed, showing that the TPs with higher log D values than the parent compound are more toxic than the PEME itself. To support these findings, the toxicities of irradiated samples on Vibrio fischeri were monitored over time. The experimental results corresponded well with the results of previous computational studies.

2.
Eur J Pharm Sci ; 107: 62-70, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28652091

RESUMO

The mainstay treatment for patients with acute coronary syndrome is an oral route dual antiplatelet therapy with a P2Y12-receptor antagonist and Aspirin (ASA). To improve patient adherence to such treatments, combination therapies (polypill) are envisioned. Physicochemical solid-state studies have been carried out to develop a preformulation strategy of ASA with the P2Y12-receptor antagonist Ticagrelor (TIC). The investigations were carried out using differential scanning calorimetry, liquid chromatography-high resolution-multistage mass spectrometry (LC-HR-MSn) and as complementary techniques Fourier transform infrared measurements and thermogravimetric analysis. A simple eutectic transition at 98°C with a mole fraction for the eutectic liquid of 0.457 has been observed and the mixing of ASA and TIC molecules in each other's crystal structures appears to be limited. No cocrystals of TIC and ASA have been found. The appearance of the eutectic liquid was linked with a clear onset of chemical instability of the two pharmaceuticals. The decomposition mechanism in the liquid phase involves prior decomposition of ASA, whose residues react with well-identified TIC interaction sites. Seven interaction products were observed by LC-HR-MSn linked to corresponding degradation products. The most important degradation pathway is N-dealkylation. In conclusion, polypills of ASA and TIC are a viable approach, but the decomposition of ASA should be avoided by eliminating high temperatures and high humidity.


Assuntos
Adenosina/análogos & derivados , Aspirina/química , Inibidores da Agregação Plaquetária/química , Adenosina/química , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Combinação de Medicamentos , Estabilidade de Medicamentos , Espectrometria de Massas/métodos , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Ticagrelor , Difração de Raios X
3.
J Pharm Biomed Anal ; 131: 223-232, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27599353

RESUMO

Argatroban (ARGA), used as intravenous anticoagulant drug, has been reported to photodegrade under light exposure, requiring specific precautions at handling, storage and administration. Thus, for the first time, aqueous ARGA photodegradation under aerobic conditions has been described in terms of photoproducts, phototransformation processes and potential implications. ARGA significant photoproducts were successfully separated and characterized by gradient reversed-phase liquid chromatography coupled with high-resolution multistage mass spectrometry (LC/HR-MSn). Hitherto still not available in literature, ARGA in-depth fragmentation study was conducted so as to thoroughly sort out the main mechanisms specific to the molecule and therefore, to propose a fragmentation pattern relevant to the identification of ARGA related substances. Thereafter, in view of the structural characteristics of the photoproducts formed, ARGA photodegradation pathways could be worked out, showing that whether by direct photolysis or through photosensitization, the methyltetrahydroquinoline nitrogen and that of guanidine group would be mainly involved in photolysis initiation reactions, through one-electron oxidation along with proton loss. Desulfonation, cyclisation affording compounds of diazinane type, and/or rearrangements with transfer of the methyltetrahydroquinoline group toward the guanidine function were observed accordingly. Having a good insight into ARGA photodegradation pathways allows for consistent measures in view of mitigating or avoiding the drug decay and the related potential effects.


Assuntos
Fotólise , Ácidos Pipecólicos/análise , Arginina/análogos & derivados , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas/métodos , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...