Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38651949

RESUMO

The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed error-prone and lack architectural context; or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine learning model (BiliQML) able to quantify biliary forms in the liver of anti-Keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F-score of 0.87. Application of BiliQML on seven separate cholangiopathy models; genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, Albumin-CRE; ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition), allowed for a means to validate the capabilities, and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models indicate a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much needed morphologic context to standard immunofluorescence - based histology, and provides clinical and basic-science researchers a novel tool for the characterization of cholangiopathies.

2.
Hepatology ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446707

RESUMO

BACKGROUND AND AIMS: High levels of serum matrix metalloproteinase-7 (MMP-7) have been linked to biliary atresia (BA), with wide variation in concentration cutoffs. We investigated the accuracy of serum MMP-7 as a diagnostic biomarker in a large North American cohort. APPROACH AND RESULTS: MMP-7 was measured in serum samples of 399 infants with cholestasis in the Prospective Database of Infants with Cholestasis study of the Childhood Liver Disease Research Network, 201 infants with BA and 198 with non-BA cholestasis (age median: 64 and 59 days, p = 0.94). MMP-7 was assayed on antibody-bead fluorescence (single-plex) and time resolved fluorescence energy transfer assays. The discriminative performance of MMP-7 was compared with other clinical markers. On the single-plex assay, MMP-7 generated an AUROC of 0.90 (CI: 0.87-0.94). At cutoff 52.8 ng/mL, it produced sensitivity = 94.03%, specificity = 77.78%, positive predictive value = 64.46%, and negative predictive value = 96.82% for BA. AUROC for gamma-glutamyl transferase = 0.81 (CI: 0.77-0.86), stool color = 0.68 (CI: 0.63-0.73), and pathology = 0.84 (CI: 0.76-0.91). Logistic regression models of MMP-7 with other clinical variables individually or combined showed an increase for MMP-7+gamma-glutamyl transferase AUROC to 0.91 (CI: 0.88-0.95). Serum concentrations produced by time resolved fluorescence energy transfer differed from single-plex, with an optimal cutoff of 18.2 ng/mL. Results were consistent within each assay technology and generated similar AUROCs. CONCLUSIONS: Serum MMP-7 has high discriminative properties to differentiate BA from other forms of neonatal cholestasis. MMP-7 cutoff values vary according to assay technology. Using MMP-7 in the evaluation of infants with cholestasis may simplify diagnostic algorithms and shorten the time to hepatoportoenterostomy.

3.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38407207

RESUMO

BACKGROUND: Ductular reactivity is central to the pathophysiology of cholangiopathies. Mechanisms underlying the reactive phenotype activation by exogenous inflammatory mediators and bile acids are poorly understood. METHODS: Using human extrahepatic cholangiocyte organoids (ECOs) we developed an injury model emulating the cholestatic microenvironment with exposure to inflammatory mediators and various pathogenic bile acids. Moreover, we explored roles for the bile acid activated Sphingosine-1-phosphate receptor 2 (S1PR2) and potential beneficial effects of therapeutic bile acids UDCA and norUDCA. RESULTS: Synergistic exposure to bile acids (taurocholic acid, glycocholic acid, glycochenodeoxycholic acid) and TNF-α for 24 hours induced a reactive state as measured by ECO diameter, proliferation, lactate dehydrogenase activity and reactive phenotype markers. While NorUDCA and UDCA treatments given 8 hours after injury induction both suppressed reactive phenotype activation and most injury parameters, proliferation was improved by NorUDCA only. Extrahepatic cholangiocyte organoid stimulation with S1PR2 agonist sphingosine-1-phosphate reproduced the cholangiocyte reactive state and upregulated S1PR2 downstream mediators; these effects were suppressed by S1PR2 antagonist JET-013 (JET), downstream mediator extracellular signal-regulated kinase 1/2 inhibitor, and by norUDCA or UDCA treatments. JET also partially suppressed reactive phenotype after bile acid injury. CONCLUSIONS: We developed a novel model to study the reactive cholangiocyte state in response to pathological stimuli in cholestasis and demonstrated a contributory role of S1PR2 signaling in both injury and NorUDCA/UDCA treatments. This model is a valuable tool to further explore the pathophysiology of human cholangiopathies.


Assuntos
Ácidos e Sais Biliares , Colestase , Humanos , Mediadores da Inflamação , Fenótipo , Transdução de Sinais
4.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405928

RESUMO

Bile acids (BAs) are gastrointestinal metabolites that serve dual functions in lipid absorption and cell signaling. BAs circulate actively between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with intestinal cells in vivo remain ill-defined. Through multi-site sampling of nearly 100 BA species in individual wild type mice, as well as mice lacking the ileal BA transporter, Asbt/Slc10a2, we calculate the ileal BA pool in fasting C57BL/6J mice to be ~0.3 µmoles/g. Asbt-mediated transport accounts for ~80% of this pool and amplifies size, whereas passive absorption explains the remaining ~20%, and generates diversity. Accordingly, ileal BA pools in mice lacking Asbt are ~5-fold smaller than in wild type controls, enriched in secondary BA species normally found in the colon, and elicit unique transcriptional responses in cultured ileal explants. This work quantitatively defines ileal BA pools in mice and reveals how BA dysmetabolism can impinge on intestinal physiology.

5.
Annu Rev Pathol ; 19: 319-344, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265882

RESUMO

Cholestasis is the predominate feature of many pediatric hepatobiliary diseases. The physiologic flow of bile requires multiple complex processes working in concert. Bile acid (BA) synthesis and excretion, the formation and flow of bile, and the enterohepatic reuptake of BAs all function to maintain the circulation of BAs, a key molecule in lipid digestion, metabolic and cellular signaling, and, as discussed in the review, a crucial mediator in the pathogenesis of cholestasis. Disruption of one or several of these steps can result in the accumulation of toxic BAs in bile ducts and hepatocytes leading to inflammation, fibrosis, and, over time, biliary and hepatic cirrhosis. Biliary atresia, progressive familial intrahepatic cholestasis, primary sclerosing cholangitis, and Alagille syndrome are four of the most common pediatric cholestatic conditions. Through understanding the commonalities and differences in these diseases, the important cellular mechanistic underpinnings of cholestasis can be greater appreciated.


Assuntos
Colestase Intra-Hepática , Colestase , Criança , Humanos , Hepatócitos , Inflamação
6.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939855

RESUMO

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Assuntos
Proteínas de Transporte , Colestase , Nefropatias , Hepatopatias , Glicoproteínas de Membrana , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Camundongos , Animais , Colestase/complicações , Colestase/metabolismo , Rim/metabolismo , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Ductos Biliares/metabolismo , Hepatopatias/metabolismo , Sódio
7.
Hepatology ; 79(6): 1279-1292, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38146932

RESUMO

BACKGROUND AND AIMS: Alagille syndrome (ALGS) is characterized by chronic cholestasis with associated pruritus and extrahepatic anomalies. Maralixibat, an ileal bile acid transporter inhibitor, is an approved pharmacologic therapy for cholestatic pruritus in ALGS. Since long-term placebo-controlled studies are not feasible or ethical in children with rare diseases, a novel approach was taken comparing 6-year outcomes from maralixibat trials with an aligned and harmonized natural history cohort from the G lobal AL agille A lliance (GALA) study. APPROACH AND RESULTS: Maralixibat trials comprise 84 patients with ALGS with up to 6 years of treatment. GALA contains retrospective data from 1438 participants. GALA was filtered to align with key maralixibat eligibility criteria, yielding 469 participants. Serum bile acids could not be included in the GALA filtering criteria as these are not routinely performed in clinical practice. Index time was determined through maximum likelihood estimation in an effort to align the disease severity between the two cohorts with the initiation of maralixibat. Event-free survival, defined as the time to first event of manifestations of portal hypertension (variceal bleeding, ascites requiring therapy), surgical biliary diversion, liver transplant, or death, was analyzed by Cox proportional hazards methods. Sensitivity analyses and adjustments for covariates were applied. Age, total bilirubin, gamma-glutamyl transferase, and alanine aminotransferase were balanced between groups with no statistical differences. Event-free survival in the maralixibat cohort was significantly better than the GALA cohort (HR, 0.305; 95% CI, 0.189-0.491; p <0.0001). Multiple sensitivity and subgroup analyses (including serum bile acid availability) showed similar findings. CONCLUSIONS: This study demonstrates a novel application of a robust statistical method to evaluate outcomes in long-term intervention studies where placebo comparisons are not feasible, providing wide application for rare diseases. This comparison with real-world natural history data suggests that maralixibat improves event-free survival in patients with ALGS.


Assuntos
Síndrome de Alagille , Humanos , Síndrome de Alagille/complicações , Síndrome de Alagille/tratamento farmacológico , Feminino , Masculino , Estudos Retrospectivos , Criança , Lactente , Pré-Escolar , Intervalo Livre de Progressão , Adolescente , Proteínas de Transporte , Glicoproteínas de Membrana
9.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675454

RESUMO

Biliary atresia is a fibroinflammatory neonatal disease with no effective therapies. A subset of cases (10-20%) is associated with laterality defects - labeled biliary atresia splenic malformation (BASM) syndrome. Recently, whole-exome sequencing of patients with BASM identified deleterious variants in PKD1L1. PKD1L1 is involved in left-right axis determination; however, its role in cholangiocytes is unknown. We generated the pkd1l1hsc117 allele using CRISPR/Cas9 mutagenesis in zebrafish to determine the role of Pkd1l1 in biliary development and function. Wild-type and mutant larvae were assessed for laterality defects, biliary function and biliary tree architecture at 5 days post fertilization. pkd1l1hsc117 mutant larvae exhibited early left-right patterning defects. The gallbladder was positioned on the left in 47% of mutants compared to 4% of wild-type larvae. Accumulation of PED6 in the gallbladder, an indicator of hepatobiliary function, was significantly reduced in pkd1l1hsc117 mutants (46%) compared to wild-type larvae (4%). pkd1l1hsc117 larvae exhibited fewer biliary epithelial cells and reduced density of the intrahepatic biliary network compared to those in wild-type larvae. These data highlight the essential role of pkd1l1 in normal development and function of the zebrafish biliary system, supporting a role for this gene as a cause of BASM.


Assuntos
Anormalidades Múltiplas , Atresia Biliar , Sistema Biliar , Peixe-Zebra , Animais , Proteínas de Membrana/genética , Baço , Peixe-Zebra/genética
10.
Semin Liver Dis ; 43(3): 323-335, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37582400

RESUMO

Biliary atresia (BA) is the most prevalent serious liver disease of infancy and childhood, and the principal indication for liver transplantation in pediatrics. BA is best considered as an idiopathic panbiliary cholangiopathy characterized by obstruction of bile flow and consequent cholestasis presenting during fetal and perinatal periods. While several etiologies have been proposed, each has significant drawbacks that have limited understanding of disease progression and the development of effective treatments. Recently, modern genetic analyses have uncovered gene variants contributing to BA, thereby shifting the paradigm for explaining the BA phenotype from an acquired etiology (e.g., virus, toxin) to one that results from genetically altered cholangiocyte development and function. Herein we review recently reported genetic contributions to BA, highlighting the enhanced representation of variants in biological pathways involving ciliary function, cytoskeletal structure, and inflammation. Finally, we blend these findings as a new framework for understanding the resultant BA phenotype as a developmental cholangiopathy.


Assuntos
Atresia Biliar , Colestase , Transplante de Fígado , Animais , Gravidez , Feminino , Humanos , Criança , Atresia Biliar/genética , Colestase/complicações , Transplante de Fígado/efeitos adversos , Inflamação/complicações , Modelos Animais de Doenças
11.
JHEP Rep ; 5(8): 100782, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37456676

RESUMO

Background & Aims: PEDFIC 2, an ongoing, open-label, 72-week study, evaluates odevixibat, an ileal bile acid transporter inhibitor, in patients with progressive familial intrahepatic cholestasis. Methods: PEDFIC 2 enrolled and dosed 69 patients across two cohorts; all received odevixibat 120 µg/kg per day. Cohort 1 comprised children from PEDFIC 1, and cohort 2 comprised new patients (any age). We report data through 15 July 2020, with Week 24 of PEDFIC 2 the main time point analysed. This represents up to 48 weeks of cumulative exposure for patients treated with odevixibat from the 24-week PEDFIC 1 study (cohort 1A) and up to 24 weeks of treatment for those who initiated odevixibat in PEDFIC 2 (patients who received placebo in PEDFIC 1 [cohort 1B] or cohort 2 patients). Primary endpoints for this prespecified interim analysis were change from baseline to Weeks 22-24 in serum bile acids (sBAs) and proportion of positive pruritus assessments (≥1-point drop from PEDFIC 2 baseline in pruritus on a 0-4 scale or score ≤1) over the 24-week period. Safety monitoring included evaluating treatment-emergent adverse events (TEAEs). Results: In cohort 1A, mean change from PEDFIC 1 baseline to Weeks 22-24 of PEDFIC 2 in sBAs was -201 µmol/L (p <0.0001). For cohort 1B and cohort 2, mean changes from odevixibat initiation to weeks 22-24 in sBAs were -144 and -104 µmol/L, respectively. The proportion of positive pruritus assessments in the first 24-week period of PEDFIC 2 was 33%, 56%, and 62% in cohorts 1A, 1B, and 2, respectively. Most TEAEs were mild or moderate. No drug-related serious TEAEs occurred. Conclusions: Odevixibat in patients with progressive familial intrahepatic cholestasis was generally well tolerated and associated with sustained reductions in sBAs and pruritus. Clinical Trials Registration: This study is registered at ClinicalTrials.gov (NCT03659916). Impact and Implications: Disrupted bile flow is a hallmark feature of patients with progressive familial intrahepatic cholestasis and can result in build-up of bile constituents in the liver with spill over into the bloodstream; other effects that patients can experience include extremely itchy skin, and because not enough bile reaches the gut, patients can have problems digesting food, which may lead to poor growth. Odevixibat is an orally administered medication that shunts bile acids away from the liver. The current study, called PEDFIC 2, suggested that odevixibat can improve the problematic signs and symptoms of progressive familial intrahepatic cholestasis and was generally safe for patients.

12.
Bio Protoc ; 13(14): e4776, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37497459

RESUMO

Current means to quantify cells, gene expression, and fibrosis of liver histological slides are not standardized in the research community and typically rely upon data acquired from a selection of random regions identified in each slide. As such, analyses are subject to selection bias as well as limited subsets of available data elements throughout the slide. A whole-slide analysis of cells and fibrosis would provide for a more accurate and complete quantitative analysis, along with minimization of intra- and inter-experimental variables. Herein, we present LiverQuant, a method for quantifying whole-slide scans of digitized histologic images to render a more comprehensive analysis of presented data elements. After loading images and preparing the project in the QuPath program, researchers are provided with one to two scripts per analysis that generate an average intensity threshold for their staining, automated tissue annotation, and downstream detection of their anticipated cellular matrices. When compared with two standard methodologies for histological quantification, LiverQuant had two significant advantages: increased speed and a 50-fold greater tissue area coverage. Using publicly available open-source code (GitHub), LiverQuant improves the reliability and reproducibility of experimental results while reducing the time scientists require to perform bulk analysis of liver histology. This analytical process is readily adaptable by most laboratories, requires minimal optimization, and its principles and code can be optimized for use in other organs. Graphical overview.

13.
Lab Chip ; 23(13): 2877-2898, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37282629

RESUMO

Advances in microsystem engineering have enabled the development of highly controlled models of the liver that better recapitulate the unique in vivo biological conditions. In just a few short years, substantial progress has been made in creating complex mono- and multi-cellular models that mimic key metabolic, structural, and oxygen gradients crucial for liver function. Here we review: 1) the state-of-the-art in liver-centric microphysiological systems and 2) the array of liver diseases and pressing biological and therapeutic challenges which could be investigated with these systems. The engineering community has unique opportunities to innovate with new liver-on-a-chip devices and partner with biomedical researchers to usher in a new era of understanding of the molecular and cellular contributors to liver diseases and identify and test rational therapeutic modalities.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microfisiológicos , Fígado/metabolismo
14.
Hepatol Commun ; 7(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184518

RESUMO

BACKGROUND: Alterations in both mitochondrial DNA (mtDNA) and nuclear DNA genes affect mitochondria function, causing a range of liver-based conditions termed mitochondrial hepatopathies (MH), which are subcategorized as mtDNA depletion, RNA translation, mtDNA deletion, and enzymatic disorders. We aim to enhance the understanding of pathogenesis and natural history of MH. METHODS: We analyzed data from patients with MH phenotypes to identify genetic causes, characterize the spectrum of clinical presentation, and determine outcomes. RESULTS: Three enrollment phenotypes, that is, acute liver failure (ALF, n = 37), chronic liver disease (Chronic, n = 40), and post-liver transplant (n = 9), were analyzed. Patients with ALF were younger [median 0.8 y (range, 0.0, 9.4) vs 3.4 y (0.2, 18.6), p < 0.001] with fewer neurodevelopmental delays (40.0% vs 81.3%, p < 0.001) versus Chronic. Comprehensive testing was performed more often in Chronic than ALF (90.0% vs 43.2%); however, etiology was identified more often in ALF (81.3% vs 61.1%) with mtDNA depletion being most common (ALF: 77% vs Chronic: 41%). Of the sequenced cohort (n = 60), 63% had an identified mitochondrial disorder. Cluster analysis identified a subset without an underlying genetic etiology, despite comprehensive testing. Liver transplant-free survival was 40% at 2 years (ALF vs Chronic, 16% vs 65%, p < 0.001). Eighteen (21%) underwent transplantation. With 33 patient-years of follow-up after the transplant, 3 deaths were reported. CONCLUSIONS: Differences between ALF and Chronic MH phenotypes included age at diagnosis, systemic involvement, transplant-free survival, and genetic etiology, underscoring the need for ultra-rapid sequencing in the appropriate clinical setting. Cluster analysis revealed a group meeting enrollment criteria but without an identified genetic or enzymatic diagnosis, highlighting the need to identify other etiologies.


Assuntos
Falência Hepática Aguda , Transplante de Fígado , Humanos , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/genética , Transplante de Fígado/efeitos adversos , DNA Mitocondrial/genética , Fenótipo
15.
Hepatol Commun ; 7(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058680

RESUMO

BACKGROUND: In children with biliary atresia (BA), pathologic structural changes within the heart, which define cirrhotic cardiomyopathy, are associated with adverse perioperative outcomes. Despite their clinical relevance, little is known about the pathogenesis and triggers of pathologic remodeling. Bile acid excess causes cardiomyopathy in experimental cirrhosis, but its role in BA is poorly understood. METHODS: Echocardiographic parameters of left ventricular (LV) geometry [LV mass (LVM), LVM indexed to height, left atrial volume indexed to BSA (LAVI), and LV internal diameter (LVID)] were correlated with circulating serum bile acid concentrations in 40 children (52% female) with BA listed for transplantation. A receiver-operating characteristic curve was generated to determine optimal threshold values of bile acids to detect pathologic changes in LV geometry using Youden index. Paraffin-embedded human heart tissue was separately analyzed by immunohistochemistry for the presence of bile acid-sensing Takeda G-protein-coupled membrane receptor type 5. RESULTS: In the cohort, 52% (21/40) of children had abnormal LV geometry; the optimal bile acid concentration to detect this abnormality with 70% sensitivity and 64% specificity was 152 µmol/L (C-statistics=0.68). Children with bile acid concentrations >152 µmol/L had ∼8-fold increased odds of detecting abnormalities in LVM, LVM index, left atrial volume index, and LV internal diameter. Serum bile acids positively correlated with LVM, LVM index, and LV internal diameter. Separately, Takeda G-protein-coupled membrane receptor type 5 protein was detected in myocardial vasculature and cardiomyocytes on immunohistochemistry. CONCLUSION: This association highlights the unique role of bile acids as one of the targetable potential triggers for myocardial structural changes in BA.


Assuntos
Atresia Biliar , Cardiomiopatias , Criança , Humanos , Feminino , Masculino , Cirrose Hepática/complicações , Cardiomiopatias/complicações , Ácidos e Sais Biliares , Proteínas de Ligação ao GTP
16.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36787187

RESUMO

The pronounced choleretic properties of 24-norUrsodeoxycholic acid (norUDCA) to induce bicarbonate-rich bile secretion have been attributed to its ability to undergo cholehepatic shunting. The goal of this study was to identify the mechanisms underlying the choleretic actions of norUDCA and the role of the bile acid transporters. Here, we show that the apical sodium-dependent bile acid transporter (ASBT), organic solute transporter-α (OSTα), and organic anion transporting polypeptide 1a/1b (OATP1a/1b) transporters are dispensable for the norUDCA stimulation of bile flow and biliary bicarbonate secretion. Chloride channels in biliary epithelial cells provide the driving force for biliary secretion. In mouse large cholangiocytes, norUDCA potently stimulated chloride currents that were blocked by siRNA silencing and pharmacological inhibition of calcium-activated chloride channel transmembrane member 16A (TMEM16A) but unaffected by ASBT inhibition. In agreement, blocking intestinal bile acid reabsorption by coadministration of an ASBT inhibitor or bile acid sequestrant did not impact norUDCA stimulation of bile flow in WT mice. The results indicate that these major bile acid transporters are not directly involved in the absorption, cholehepatic shunting, or choleretic actions of norUDCA. Additionally, the findings support further investigation of the therapeutic synergy between norUDCA and ASBT inhibitors or bile acid sequestrants for cholestatic liver disease.


Assuntos
Bicarbonatos , Colagogos e Coleréticos , Camundongos , Animais , Bicarbonatos/metabolismo , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico , Ácidos e Sais Biliares , Proteínas de Membrana Transportadoras
17.
Hepatology ; 77(4): 1274-1286, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645229

RESUMO

BACKGROUND AND AIMS: A recent multicenter genetic exploration of the biliary atresia splenic malformation syndrome identified mutations in the ciliary gene PKD1L1 as candidate etiologic contributors. We hypothesized that deletion of Pkd1l1 in developing hepatoblasts would lead to cholangiopathy in mice. APPROACH AND RESULTS: CRISPR-based genome editing inserted loxP sites flanking exon 8 of the murine Pkd1l1 gene. Pkd1l1Fl/Fl cross-bred with alpha-fetoprotein-Cre expressing mice to generate a liver-specific intrahepatic Pkd1l1 -deficient model (LKO). From embryonic day 18 through week 30, control ( Fl/Fl ) and LKO mice were evaluated with standard serum chemistries and liver histology. At select ages, tissues were analyzed using RNA sequencing, immunofluorescence, and electron microscopy with a focus on biliary structures, peribiliary inflammation, and fibrosis. Bile duct ligation for 5 days of Fl/Fl and LKO mice was followed by standard serum and liver analytics. Histological analyses from perinatal ages revealed delayed biliary maturation and reduced primary cilia, with progressive cholangiocyte proliferation, peribiliary fibroinflammation, and arterial hypertrophy evident in 7- to 16-week-old LKO versus Fl/Fl livers. Following bile duct ligation, cholangiocyte proliferation, peribiliary fibroinflammation, and necrosis were increased in LKO compared with Fl/Fl livers. CONCLUSIONS: Bile duct ligation of the Pkd1l1 -deficient mouse model mirrors several aspects of the intrahepatic pathophysiology of biliary atresia in humans including bile duct dysmorphogenesis, peribiliary fibroinflammation, hepatic arteriopathy, and ciliopathy. This first genetically linked model of biliary atresia, the Pkd1l1 LKO mouse, may allow researchers a means to develop a deeper understanding of the pathophysiology of this serious and perplexing disorder, including the opportunity to identify rational therapeutic targets.


Assuntos
Atresia Biliar , Ciliopatias , Humanos , Animais , Camundongos , Lactente , Atresia Biliar/patologia , Fígado/patologia , Ductos Biliares/patologia , Fibrose , Ciliopatias/complicações , Ciliopatias/patologia , Proteínas de Membrana
19.
J Hepatol ; 78(4): 693-703, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36528237

RESUMO

BACKGROUND & AIMS: Despite recent progress, non-invasive tests for the diagnostic assessment and monitoring of non-alcoholic fatty liver disease (NAFLD) remain an unmet need. Herein, we aimed to identify diagnostic signatures of the key histological features of NAFLD. METHODS: Using modified-aptamer proteomics, we assayed 5,220 proteins in each of 2,852 single serum samples from 636 individuals with histologically confirmed NAFLD. We developed and validated dichotomized protein-phenotype models to identify clinically relevant severities of steatosis (grade 0 vs. 1-3), hepatocellular ballooning (0 vs. 1 or 2), lobular inflammation (0-1 vs. 2-3) and fibrosis (stages 0-1 vs. 2-4). RESULTS: The AUCs of the four protein models, based on 37 analytes (18 not previously linked to NAFLD), for the diagnosis of their respective components (at a clinically relevant severity) in training/paired validation sets were: fibrosis (AUC 0.92/0.85); steatosis (AUC 0.95/0.79), inflammation (AUC 0.83/0.72), and ballooning (AUC 0.87/0.83). An additional outcome, at-risk NASH, defined as steatohepatitis with NAFLD activity score ≥4 (with a score of at least 1 for each of its components) and fibrosis stage ≥2, was predicted by multiplying the outputs of each individual component model (AUC 0.93/0.85). We further evaluated their ability to detect change in histology following treatment with placebo, pioglitazone, vitamin E or obeticholic acid. Component model scores significantly improved in the active therapies vs. placebo, and differential effects of vitamin E, pioglitazone, and obeticholic acid were identified. CONCLUSIONS: Serum protein scanning identified signatures corresponding to the key components of liver biopsy in NAFLD. The models developed were sufficiently sensitive to characterize the longitudinal change for three different drug interventions. These data support continued validation of these proteomic models to enable a "liquid biopsy"-based assessment of NAFLD. CLINICAL TRIAL NUMBER: Not applicable. IMPACT AND IMPLICATIONS: An aptamer-based protein scan of serum proteins was performed to identify diagnostic signatures of the key histological features of non-alcoholic fatty liver disease (NAFLD), for which no approved non-invasive diagnostic tools are currently available. We also identified specific protein signatures related to the presence and severity of NAFLD and its histological components that were also sensitive to change over time. These are fundamental initial steps in establishing a serum proteome-based diagnostic signature of NASH and provide the rationale for using these signatures to test treatment response and to identify several novel targets for evaluation in the pathogenesis of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Biópsia , Fibrose , Inflamação/patologia , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Pioglitazona , Proteômica , Vitamina E
20.
Hepatology ; 77(2): 512-529, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036223

RESUMO

BACKGROUND AND AIMS: Alagille syndrome (ALGS) is a multisystem disorder, characterized by cholestasis. Existing outcome data are largely derived from tertiary centers, and real-world data are lacking. This study aimed to elucidate the natural history of liver disease in a contemporary, international cohort of children with ALGS. APPROACH AND RESULTS: This was a multicenter retrospective study of children with a clinically and/or genetically confirmed ALGS diagnosis, born between January 1997 and August 2019. Native liver survival (NLS) and event-free survival rates were assessed. Cox models were constructed to identify early biochemical predictors of clinically evident portal hypertension (CEPH) and NLS. In total, 1433 children (57% male) from 67 centers in 29 countries were included. The 10 and 18-year NLS rates were 54.4% and 40.3%. By 10 and 18 years, 51.5% and 66.0% of children with ALGS experienced ≥1 adverse liver-related event (CEPH, transplant, or death). Children (>6 and ≤12 months) with median total bilirubin (TB) levels between ≥5.0 and <10.0 mg/dl had a 4.1-fold (95% confidence interval [CI], 1.6-10.8), and those ≥10.0 mg/dl had an 8.0-fold (95% CI, 3.4-18.4) increased risk of developing CEPH compared with those <5.0 mg/dl. Median TB levels between ≥5.0 and <10.0 mg/dl and >10.0 mg/dl were associated with a 4.8 (95% CI, 2.4-9.7) and 15.6 (95% CI, 8.7-28.2) increased risk of transplantation relative to <5.0 mg/dl. Median TB <5.0 mg/dl were associated with higher NLS rates relative to ≥5.0 mg/dl, with 79% reaching adulthood with native liver ( p < 0.001). CONCLUSIONS: In this large international cohort of ALGS, only 40.3% of children reach adulthood with their native liver. A TB <5.0 mg/dl between 6 and 12 months of age is associated with better hepatic outcomes. These thresholds provide clinicians with an objective tool to assist with clinical decision-making and in the evaluation of therapies.


Assuntos
Síndrome de Alagille , Colestase , Hipertensão Portal , Humanos , Criança , Masculino , Feminino , Síndrome de Alagille/epidemiologia , Estudos Retrospectivos , Hipertensão Portal/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...