Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(10)2020 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022940

RESUMO

Post-translational protein regulation allows for fine-tuning of cellular functions and involves a wide range of modifications, including ubiquitin and ubiquitin-like modifiers (Ubls). The dynamic balance of Ubl conjugation and removal shapes the fates of target substrates, in turn modulating various cellular processes. The mechanistic aspects of Ubl pathways and their biological roles have been largely established in yeast, plants, and mammalian cells. However, these modifiers may be utilised differently in highly specialised and divergent organisms, such as parasitic protozoa. In this review, we explore how these parasites employ Ubls, in particular SUMO, NEDD8, ATG8, ATG12, URM1, and UFM1, to regulate their unconventional cellular physiology. We discuss emerging data that provide evidence of Ubl-mediated regulation of unique parasite-specific processes, as well as the distinctive features of Ubl pathways in parasitic protozoa. We also highlight the potential to leverage these essential regulators and their cognate enzymatic machinery for development of therapeutics to protect against the diseases caused by protozoan parasites.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Interações Hospedeiro-Parasita/genética , Processamento de Proteína Pós-Traducional/genética , Ubiquitinas/genética , Proteína 12 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Humanos , Proteína NEDD8/genética , Proteína SUMO-1/genética , Transdução de Sinais
2.
PLoS Pathog ; 15(10): e1008086, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658303

RESUMO

Plasmodium parasites are the causative agents of malaria, a disease with wide public health repercussions. Increasing drug resistance and the absence of a vaccine make finding new chemotherapeutic strategies imperative. Components of the ubiquitin and ubiquitin-like pathways have garnered increased attention as novel targets given their necessity to parasite survival. Understanding how these pathways are regulated in Plasmodium and identifying differences to the host is paramount to selectively interfering with parasites. Here, we focus on Nedd8 modification in Plasmodium falciparum, given its central role to cell division and DNA repair, processes critical to Plasmodium parasites given their unusual cell cycle and requirement for refined repair mechanisms. By applying a functional chemical approach, we show that deNeddylation is controlled by a different set of enzymes in the parasite versus the human host. We elucidate the molecular determinants of the unusual dual ubiquitin/Nedd8 recognition by the essential PfUCH37 enzyme and, through parasite transgenics and drug assays, determine that only its ubiquitin activity is critical to parasite survival. Our experiments reveal interesting evolutionary differences in how neddylation is controlled in higher versus lower eukaryotes, and highlight the Nedd8 pathway as worthy of further exploration for therapeutic targeting in antimalarial drug design.


Assuntos
Proteína NEDD8/metabolismo , Plasmodium falciparum/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Antimaláricos/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Hidrólise , Malária Falciparum/tratamento farmacológico , Malária Falciparum/patologia , Ubiquitinação/fisiologia
3.
EMBO J ; 35(16): 1779-92, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27370208

RESUMO

Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti-bacterial autophagy relies on the core autophagy machinery, cargo receptors, and "eat-me" signals such as galectin-8 and ubiquitin that label bacteria as autophagy cargo. Anti-bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti-bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella-associated "eat-me" signals, including host-derived glycans and K48- and K63-linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Citosol/microbiologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Salmonella typhimurium/imunologia , Animais , Humanos , Camundongos , Proteínas de Ligação a Fosfato
4.
Mol Microbiol ; 83(1): 208-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22111928

RESUMO

This study has identified horizontally acquired genomic regions of enterohaemorrhagic Escherichia coli O157:H7 that regulate expression of the type III secretion (T3S) system encoded by the locus of enterocyte effacement (LEE). Deletion of O-island 51, a 14.93 kb cryptic prophage (CP-933C), resulted in a reduction in LEE expression and T3S. The deletion also had a reduced capacity to attach to epithelial cells and significantly reduced E. coli O157 excretion levels from sheep. Further characterization of O-island 51 identified a novel positive regulator of the LEE, encoded by ecs1581 in the E. coli O157:H7 strain Sakai genome and present but not annotated in the E. coli strain EDL933 sequence. Functionally important residues of ECs1581 were identified based on phenotypic variants present in sequenced E. coli strains and the regulator was termed RgdR based on a motif demonstrated to be important for stimulation of gene expression. While RgdR activated expression from the LEE1 promoter in the presence or absence of the LEE-encoded regulator (Ler), RgdR stimulation of T3S required ler and Ler autoregulation. RgdR also controlled the expression of other phenotypes, including motility, indicating that this new family of regulators may have a more global role in E. coli gene expression.


Assuntos
Sistemas de Secreção Bacterianos , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/virologia , Regulação Bacteriana da Expressão Gênica , Prófagos/genética , Animais , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Prófagos/fisiologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...