Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Behav ; 147: 109407, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688840

RESUMO

OBJECTIVE: Temporal lobe epilepsy (TLE) is a network disorder that alters the total organization of the language-related network. Task-based functional magnetic resonance imaging (fMRI) aimed at functional connectivity is a direct method to investigate how the network is reorganized. However, such studies are scarce and represented mostly by the resting-state analysis of the individual connections between regions. To fill this gap, we used a graph-based analysis, which allows us to cover the total language-related network changes, such as disruptions in an integration/segregation balance, during a language task in TLE. METHODS: We collected task-based fMRI data with sentence completion from 19 healthy controls and 28 people with left TLE. Using graph-based analysis, we estimated how the language-related network segregated into modules and tested whether they differed between groups. We evaluated the total network integration and the integration within modules. To assess intermodular integration, we considered the number and location of connector hubs-regions with high connectivity. RESULTS: The language-related network was differently segregated during language processing in the groups. While healthy controls showed a module consisting of left perisylvian regions, people with TLE exhibited a bilateral module formed by the anterior language-related areas and a module in the left temporal lobe, reflecting hyperconnectivity within the epileptic focus. As a consequence of this reorganization, there was a statistical tendency that the dominance of the intramodular integration over the total network integration was greater in TLE, which predicted language performance. The increase in the number of connector hubs in the right hemisphere, in turn, was compensatory in TLE. SIGNIFICANCE: Our study provides insights into the reorganization of the language-related network in TLE, revealing specific network changes in segregation and integration. It confirms reduced global connectivity and compensation across the healthy hemisphere, commonly observed in epilepsy. These findings advance the understanding of the network-based reorganizational processes underlying language processing in TLE.

2.
PLoS One ; 17(12): e0276721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520829

RESUMO

Language lateralization is the most intriguing trait of functional asymmetry for cognitive functions. Nowadays, ontogenetic determinants of this trait are largely unknown, but there are efforts to find its anatomical correlates. In particular, a white matter interhemispheric connection-the corpus callosum-has been proposed as such. In the present study, we aimed to find the association between the degree of language lateralization and metrics of the callosal sub-regions. We applied a sentence completion fMRI task to measure the degree of language lateralization in a group of healthy participants balanced for handedness. We obtained the volumes and microstructural properties of callosal sub-regions with two tractography techniques, diffusion tensor imaging (DTI) and constrained spherical deconvolution (CSD). The analysis of DTI-based metrics did not reveal any significant associations with language lateralization. In contrast, CSD-based analysis revealed that the volumes of a callosal sub-region terminating in the core posterior language-related areas predict a stronger degree of language lateralization. This finding supports the specific inhibitory model implemented through the callosal fibers projecting into the core posterior language-related areas in the degree of language lateralization, with no relevant contribution of other callosal sub-regions.


Assuntos
Corpo Caloso , Imagem de Tensor de Difusão , Humanos , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Idioma , Lateralidade Funcional , Imageamento por Ressonância Magnética
3.
Front Hum Neurosci ; 16: 984306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248681

RESUMO

High-frequency oscillations (HFO) are a promising biomarker for the identification of epileptogenic tissue. While HFO rates have been shown to predict seizure outcome, it is not yet clear whether their morphological features might improve this prediction. We validated HFO rates against seizure outcome and delineated the distribution of HFO morphological features. We collected stereo-EEG recordings from 20 patients (231 electrodes; 1,943 contacts). We computed HFO rates (the co-occurrence of ripples and fast ripples) through a validated automated detector during non-rapid eye movement sleep. Applying machine learning, we delineated HFO morphological features within and outside epileptogenic tissue across mesial temporal lobe (MTL) and Neocortex. HFO rates predicted seizure outcome with 85% accuracy, 79% specificity, 100% sensitivity, 100% negative predictive value, and 67% positive predictive value. The analysis of HFO features showed larger amplitude in the epileptogenic tissue, similar morphology for epileptogenic HFO in MTL and Neocortex, and larger amplitude for physiological HFO in MTL. We confirmed HFO rates as a reliable biomarker for epilepsy surgery and characterized the potential clinical relevance of HFO morphological features. Our results support the prospective use of HFO in epilepsy surgery and contribute to the anatomical mapping of HFO morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...