Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Rep ; 43(2): 113803, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38368609

RESUMO

Predicting the risk of cancer mutations is critical for early detection and prevention, but differences in allelic severity of human carriers confound risk predictions. Here, we elucidate protein folding as a cellular mechanism driving differences in mutation severity of tumor suppressor BRCA1. Using a high-throughput protein-protein interaction assay, we show that protein-folding chaperone binding patterns predict the pathogenicity of variants in the BRCA1 C-terminal (BRCT) domain. HSP70 selectively binds 94% of pathogenic BRCA1-BRCT variants, most of which engage HSP70 more than HSP90. Remarkably, the magnitude of HSP70 binding linearly correlates with loss of folding and function. We identify a prevalent class of human hypomorphic BRCA1 variants that bind moderately to chaperones and retain partial folding and function. Furthermore, chaperone binding signifies greater mutation penetrance and earlier cancer onset in the clinic. Our findings demonstrate the utility of chaperones as quantitative cellular biosensors of variant folding, phenotypic severity, and cancer risk.


Assuntos
Neoplasias , Dobramento de Proteína , Humanos , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Mutação/genética , Relação Estrutura-Atividade , Neoplasias/genética , Proteína BRCA1/genética
2.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745493

RESUMO

Identifying pathogenic mutations and predicting their impact on protein structure, function and phenotype remain major challenges in genome sciences. Protein-folding chaperones participate in structure-function relationships by facilitating the folding of protein variants encoded by mutant genes. Here, we utilize a high-throughput protein-protein interaction assay to test HSP70 and HSP90 chaperone interactions as predictors of pathogenicity for variants in the tumor suppressor BRCA1. Chaperones bind 77% of pathogenic BRCA1-BRCT variants, most of which engaged HSP70 more than HSP90. Remarkably, the magnitude of chaperone binding to variants is proportional to the degree of structural and phenotypic defect induced by BRCA1 mutation. Quantitative chaperone interactions identified BRCA1-BRCT separation-of-function variants and hypomorphic alleles missed by pathogenicity prediction algorithms. Furthermore, increased chaperone binding signified greater cancer risk in human BRCA1 carriers. Altogether, our study showcases the utility of chaperones as quantitative cellular biosensors of variant folding and phenotypic severity. HIGHLIGHTS: Chaperones detect an abundance of pathogenic folding variants of BRCA1-BRCT.Degree of chaperone binding reflects severity of structural and phenotypic defect.Chaperones identify separation-of-function and hypomorphic variants. Chaperone interactions indicate penetrance and expressivity of BRCA1 alleles.

3.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37745611

RESUMO

Protein folding promotes and constrains adaptive evolution. We uncover this surprising duality in the role the protein-folding chaperone Hsp90 plays in mediating the interplay between proteome and the genome which acts to maintain the integrity of yeast metabolism in the face of proteotoxic stressors in anthropic niches. Of great industrial relevance, ethanol concentrations generated by fermentation in the making of beer and bread disrupt critical Hsp90-dependent nodes of metabolism and exert strong selective pressure for increased copy number of key genes encoding components of these nodes, yielding the classical genetic signatures of beer and bread domestication. This work establishes a mechanism of adaptive canalization in an ecology of major economic significance and highlights Hsp90-contingent variation as an important source of phantom heritability in complex traits.

4.
Blood ; 142(12): 1056-1070, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37339579

RESUMO

TP 53-mutant acute myeloid leukemia (AML) remains the ultimate therapeutic challenge. Epichaperomes, formed in malignant cells, consist of heat shock protein 90 (HSP90) and associated proteins that support the maturation, activity, and stability of oncogenic kinases and transcription factors including mutant p53. High-throughput drug screening identified HSP90 inhibitors as top hits in isogenic TP53-wild-type (WT) and -mutant AML cells. We detected epichaperomes in AML cells and stem/progenitor cells with TP53 mutations but not in healthy bone marrow (BM) cells. Hence, we investigated the therapeutic potential of specifically targeting epichaperomes with PU-H71 in TP53-mutant AML based on its preferred binding to HSP90 within epichaperomes. PU-H71 effectively suppressed cell intrinsic stress responses and killed AML cells, primarily by inducing apoptosis; targeted TP53-mutant stem/progenitor cells; and prolonged survival of TP53-mutant AML xenograft and patient-derived xenograft models, but it had minimal effects on healthy human BM CD34+ cells or on murine hematopoiesis. PU-H71 decreased MCL-1 and multiple signal proteins, increased proapoptotic Bcl-2-like protein 11 levels, and synergized with BCL-2 inhibitor venetoclax in TP53-mutant AML. Notably, PU-H71 effectively killed TP53-WT and -mutant cells in isogenic TP53-WT/TP53-R248W Molm13 cell mixtures, whereas MDM2 or BCL-2 inhibition only reduced TP53-WT but favored the outgrowth of TP53-mutant cells. Venetoclax enhanced the killing of both TP53-WT and -mutant cells by PU-H71 in a xenograft model. Our data suggest that epichaperome function is essential for TP53-mutant AML growth and survival and that its inhibition targets mutant AML and stem/progenitor cells, enhances venetoclax activity, and prevents the outgrowth of venetoclax-resistant TP53-mutant AML clones. These concepts warrant clinical evaluation.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Apoptose , Células-Tronco/metabolismo , Linhagem Celular Tumoral
5.
J Biol Chem ; 298(10): 102398, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988651

RESUMO

Unusual nucleic acid structures play vital roles as intermediates in many cellular processes and, in the case of peptide nucleic acid (PNA)-mediated triplexes, are leveraged as tools for therapeutic gene editing. However, due to their transient nature, an understanding of the factors that interact with and process dynamic nucleic acid structures remains limited. Here, we developed snapELISA (structure-specific nucleic acid-binding protein ELISA), a rapid high-throughput platform to interrogate and compare up to 2688 parallel nucleic acid structure-protein interactions in vitro. We applied this system to both triplex-forming oligonucleotide-induced DNA triplexes and DNA-bound PNA heterotriplexes to describe the identification of previously known and novel interactors for both structures. For PNA heterotriplex recognition analyses, snapELISA identified factors implicated in nucleotide excision repair (XPA, XPC), single-strand annealing repair (RAD52), and recombination intermediate structure binding (TOP3A, BLM, MUS81). We went on to validate selected factor localization to genome-targeted PNA structures within clinically relevant loci in human cells. Surprisingly, these results demonstrated XRCC5 localization to PNA triplex-forming sites in the genome, suggesting the presence of a double-strand break intermediate. These results describe a powerful comparative approach for identifying structure-specific nucleic acid interactions and expand our understanding of the mechanisms of triplex structure recognition and repair.


Assuntos
DNA , Ácidos Nucleicos Peptídicos , Humanos , DNA/química , DNA/metabolismo , Ensaio de Imunoadsorção Enzimática , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo
6.
Folia Med (Plovdiv) ; 64(2): 333-336, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35851789

RESUMO

Myotonic dystrophy type 1 or Steinert's disease is an autosomal dominant multisystem disease which is characterized by consistent contracture of muscle following stimulation (myotonia). Hypothermia, shivering, mechanical or electric stimulation during surgery can precipitate episodes of myotonia which may complicate the course of anaesthesia. The present case report focuses on successful strategies for providing general anaesthesia for laparoscopic cholecystectomy in a patient affected by this genetic disorder, at a hospital which does not have the facility for postoperative ventilation.


Assuntos
Colecistectomia Laparoscópica , Miotonia , Distrofia Miotônica , Anestesia Geral , Anestesia Intravenosa , Humanos , Miotonia/complicações , Distrofia Miotônica/complicações , Distrofia Miotônica/genética
7.
Folia Med (Plovdiv) ; 64(1): 49-54, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35851884

RESUMO

INTRODUCTION: Circadian variations in biological rhythms affect the pharmacological properties of many anaesthetic agents, suggesting circadian patterns of local anaesthetics' activity in labour pain analgesia, with important differences among diurnal and nocturnal phases.


Assuntos
Bupivacaína , Fentanila , Anestésicos Locais , Cesárea , Feminino , Fentanila/farmacologia , Humanos , Levobupivacaína , Gravidez
8.
Biochemistry ; 57(23): 3217-3221, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29553718

RESUMO

Despite purines making up one of the largest classes of metabolites in a cell, little is known about the regulatory mechanisms that facilitate efficient purine production. Under conditions resulting in high purine demand, enzymes within the de novo purine biosynthetic pathway cluster into multienzyme assemblies called purinosomes. Purinosome formation has been linked to molecular chaperones HSP70 and HSP90; however, the involvement of these molecular chaperones in purinosome formation remains largely unknown. Here, we present a new-found biochemical mechanism for the regulation of de novo purine biosynthetic enzymes mediated through HSP90. HSP90-client protein interaction assays were employed to identify two enzymes within the de novo purine biosynthetic pathway, PPAT and FGAMS, as client proteins of HSP90. Inhibition of HSP90 by STA9090 abrogated these interactions and resulted in a decrease in the level of available soluble client protein while having no significant effect on their interactions with HSP70. These findings provide a mechanism to explain the dependence of purinosome assembly on HSP90 activity. The combined efforts of molecular chaperones in the maturation of PPAT and FGAMS result in purinosome formation and are likely essential for enhancing the rate of purine production to meet intracellular purine demand.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Purinas/biossíntese , Linhagem Celular , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Humanos
9.
Cell ; 168(5): 856-866.e12, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28215707

RESUMO

HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases.


Assuntos
Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Proteínas de Choque Térmico HSP90/genética , Dobramento de Proteína , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/química , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mutação de Sentido Incorreto , Domínios e Motivos de Interação entre Proteínas , Estresse Fisiológico , Gêmeos Monozigóticos
11.
Cell ; 161(3): 647-660, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910212

RESUMO

How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays. The majority of disease-associated alleles exhibit wild-type chaperone binding profiles, suggesting they preserve protein folding or stability. While common variants from healthy individuals rarely affect interactions, two-thirds of disease-associated alleles perturb protein-protein interactions, with half corresponding to "edgetic" alleles affecting only a subset of interactions while leaving most other interactions unperturbed. With transcription factors, many alleles that leave protein-protein interactions intact affect DNA binding. Different mutations in the same gene leading to different interaction profiles often result in distinct disease phenotypes. Thus disease-associated alleles that perturb distinct protein activities rather than grossly affecting folding and stability are relatively widespread.


Assuntos
Doença/genética , Mutação de Sentido Incorreto , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Fases de Leitura Aberta , Dobramento de Proteína , Estabilidade Proteica
12.
J Biol Chem ; 289(19): 13627-37, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24695737

RESUMO

All cells rely on genomic stability mechanisms to protect against DNA alterations. PCNA is a master regulator of DNA replication and S-phase-coupled repair. PCNA post-translational modifications by ubiquitination and SUMOylation dictate how cells stabilize and re-start replication forks stalled at sites of damaged DNA. PCNA mono-ubiquitination recruits low fidelity DNA polymerases to promote error-prone replication across DNA lesions. Here, we identify the mono-ADP-ribosyltransferase PARP10/ARTD10 as a novel PCNA binding partner. PARP10 knockdown results in genomic instability and DNA damage hypersensitivity. Importantly, we show that PARP10 binding to PCNA is required for translesion DNA synthesis. Our work identifies a novel PCNA-linked mechanism for genome protection, centered on post-translational modification by mono-ADP-ribosylation.


Assuntos
Dano ao DNA , Instabilidade Genômica , Poli(ADP-Ribose) Polimerases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/metabolismo , Sumoilação , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Células HeLa , Humanos , Poli(ADP-Ribose) Polimerases/genética , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas Proto-Oncogênicas/genética
13.
Ann Hematol ; 93(1): 129-39, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23892921

RESUMO

Lenalidomide and dexamethasone (RD) is a standard of care for relapsed/refractory multiple myeloma (RRMM), but there is limited published data on its efficacy and safety in the "real world" (RW), according to the International Society of Pharmacoeconomics and Outcomes Research definition. We studied 212 RRMM patients who received RD in RW. Objective response (≥PR (partial response)) rate was 77.4 % (complete response (CR), 20.2 %). Median time to first and best response was 2 and 5 months, respectively. Median time to CR when RD was given as 2nd or >2(nd)-line treatment at 4 and 11 months, respectively. Quality of response was independent of previous lines of therapies or previous exposure to thalidomide or bortezomib. Median duration of response was 34.4 months, and it was higher in patients who received RD until progression (not reached versus 19 months, p < 0.001). Improvement of humoral immunity occurred in 60 % of responders (p < 0.001) and in the majority of patients who achieved stable disease. Adverse events were reported in 68.9 % of patients (myelosuppression in 49.4 %) and 12.7 % of patients needed hospitalization. Peripheral neuropathy was observed only in 2.5 % of patients and deep vein thrombosis in 5.7 %. Dose reductions were needed in 31 % of patients and permanent discontinuation in 38.9 %. Median time to treatment discontinuation was 16.8 months. Performance status (PS) and initial lenalidomide dose predicted for treatment discontinuation. Extra-medullary relapses occurred in 3.8 % of patients. Our study confirms that RD is effective and safe in RRMM in the RW; it produces durable responses especially in patients who continue on treatment till progression and improves humoral immunity even in patients with stable disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Idoso , Anticoagulantes/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Terapia Combinada , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Toxidermias/etiologia , Avaliação de Medicamentos , Feminino , Seguimentos , Gastroenteropatias/induzido quimicamente , Grécia , Doenças Hematológicas/induzido quimicamente , Humanos , Lenalidomida , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/cirurgia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Modelos de Riscos Proporcionais , Recidiva , Indução de Remissão , Estudos Retrospectivos , Terapia de Salvação , Talidomida/administração & dosagem , Talidomida/efeitos adversos , Talidomida/análogos & derivados , Resultado do Tratamento , Trombose Venosa/induzido quimicamente , Trombose Venosa/prevenção & controle
14.
Mol Cell ; 49(3): 536-46, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23260657

RESUMO

Damaged DNA is an obstacle during DNA replication and a cause of genome instability and cancer. To bypass this problem, eukaryotes activate DNA damage tolerance (DDT) pathways that involve ubiquitylation of the DNA polymerase clamp proliferating cell nuclear antigen (PCNA). Monoubiquitylation of PCNA mediates an error-prone pathway by recruiting translesion polymerases, whereas polyubiquitylation activates an error-free pathway that utilizes undamaged sister chromatids as templates. The error-free pathway involves recombination-related mechanisms; however, the factors that act along with polyubiquitylated PCNA remain largely unknown. Here we report that the PCNA-related 9-1-1 complex, which is typically linked to checkpoint signaling, participates together with Exo1 nuclease in error-free DDT. Notably, 9-1-1 promotes template switching in a manner that is distinct from its canonical checkpoint functions and uncoupled from the replication fork. Our findings thus reveal unexpected cooperation in the error-free pathway between the two related clamps and indicate that 9-1-1 plays a broader role in the DNA damage response than previously assumed.


Assuntos
Dano ao DNA , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Exodesoxirribonucleases/metabolismo , Fase G2 , Testes Genéticos , Mitose , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
15.
Cell ; 150(5): 987-1001, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22939624

RESUMO

HSP90 is a molecular chaperone that associates with numerous substrate proteins called clients. It plays many important roles in human biology and medicine, but determinants of client recognition by HSP90 have remained frustratingly elusive. We systematically and quantitatively surveyed most human kinases, transcription factors, and E3 ligases for interaction with HSP90 and its cochaperone CDC37. Unexpectedly, many more kinases than transcription factors bound HSP90. CDC37 interacted with kinases, but not with transcription factors or E3 ligases. HSP90::kinase interactions varied continuously over a 100-fold range and provided a platform to study client protein recognition. In wild-type clients, HSP90 did not bind particular sequence motifs, but rather associated with intrinsically unstable kinases. Stabilization of the kinase in either its active or inactive conformation with diverse small molecules decreased HSP90 association. Our results establish HSP90 client recognition as a combinatorial process: CDC37 provides recognition of the kinase family, whereas thermodynamic parameters determine client binding within the family.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Mapeamento de Interação de Proteínas , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Humanos , Luciferases de Renilla/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estabilidade Proteica , Proteoma/análise , Receptores de Esteroides/metabolismo , Alinhamento de Sequência , Termodinâmica , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Cell ; 141(2): 255-67, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20403322

RESUMO

Damaged DNA templates provide an obstacle to the replication fork and can cause genome instability. In eukaryotes, tolerance to damaged DNA is mediated largely by the RAD6 pathway involving ubiquitylation of the DNA polymerase processivity factor PCNA. Whereas monoubiquitylation of PCNA mediates error-prone translesion synthesis (TLS), polyubiquitylation triggers an error-free pathway. Both branches of this pathway are believed to occur in S phase in order to ensure replication completion. However, we found that limiting TLS or the error-free pathway to the G2/M phase of the cell-cycle efficiently promote lesion tolerance. Thus, our findings indicate that both branches of the DNA damage tolerance pathway operate effectively after chromosomal replication, outside S phase. We therefore propose that the RAD6 pathway acts on single-stranded gaps left behind newly restarted replication forks.


Assuntos
Reparo do DNA , Replicação do DNA , Fase S , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Redes e Vias Metabólicas , Antígeno Nuclear de Célula em Proliferação/metabolismo , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
17.
DNA Repair (Amst) ; 7(11): 1893-906, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18722556

RESUMO

The RAD6 pathway allows replication across DNA lesions by either an error-prone or error-free mode. Error-prone replication involves translesion polymerases and requires monoubiquitylation at lysine (K) 164 of PCNA by the Rad6 and Rad18 enzymes. By contrast, the error-free bypass is triggered by modification of PCNA by K63-linked polyubiquitin chains, a reaction that requires in addition to Rad6 and Rad18 the enzymes Rad5 and Ubc13-Mms2. Here, we show that the RAD6 pathway is also critical for controlling repair pathways that act on DNA double-strand breaks. By using gapped plasmids as substrates, we found that repair in wild-type cells proceeds almost exclusively by homology-dependent repair (HDR) using chromosomal DNA as a template, whereas non-homologous end-joining (NHEJ) is suppressed. In contrast, in cells deficient in PCNA polyubiquitylation, plasmid repair occurs largely by NHEJ. Mutant cells that are completely deficient in PCNA ubiquitylation, repair plasmids by HDR similar to wild-type cells. These findings are consistent with a model in which unmodified PCNA supports HDR, whereas PCNA monoubiquitylation diverts repair to NHEJ, which is suppressed by PCNA polyubiquitylation. More generally, our data suggest that the balance between HDR and NHEJ pathways is crucially controlled by genes of the RAD6 pathway through modifications of PCNA.


Assuntos
Dano ao DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/química , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Sequência de Bases , Reparo do DNA , Relação Dose-Resposta à Radiação , Genótipo , Modelos Biológicos , Modelos Genéticos , Plasmídeos/metabolismo , Mutação Puntual , Reação em Cadeia da Polimerase , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência do Ácido Nucleico , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
18.
EMBO J ; 24(11): 1911-20, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15902274

RESUMO

The ADP-ribosylation of proteins is an important post-translational modification that occurs in a variety of biological processes, including DNA repair, transcription, chromatin biology and long-term memory formation. Yet no protein modules are known that specifically recognize the ADP-ribose nucleotide. We provide biochemical and structural evidence that macro domains are high-affinity ADP-ribose binding modules. Our structural analysis reveals a conserved ligand binding pocket among the macro domain fold. Consistently, distinct human macro domains retain their ability to bind ADP-ribose. In addition, some macro domain proteins also recognize poly-ADP-ribose as a ligand. Our data suggest an important role for proteins containing macro domains in the biology of ADP-ribose.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Proteínas de Transporte/química , Estrutura Terciária de Proteína , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sítios de Ligação , Varredura Diferencial de Calorimetria , Proteínas de Transporte/metabolismo , Catálise , Cristalografia por Raios X , Histonas/química , Histonas/metabolismo , Humanos , Hidrólise , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Relação Estrutura-Atividade
19.
Pest Manag Sci ; 58(12): 1194-204, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12476992

RESUMO

Abstract: Losses of pirimiphos-methyl and benalaxyl in runoff water from clay soil plots cultivated with potatoes and of differing soil surface slopes were determined over approximately 120 days (1 October 1999-28 January 2000). The plot slopes were 0, 1, 2.5 and 5%, and soil erosion increased with the slope from 610 to 1760kgha(-1). The runoff of surface water was between 3.1 and 16.6% of the rainfall. Surface runoff was highest for the fifth and seventh runoff events due to rainfall, 51 days and 72 days after the first pesticide application. The maximum concentrations of the two pesticides in runoff occurred in the plots with the greatest slope (5%) during the fifth runoff event, November 21, 1999 reaching 8.4 and 12.3 microg litre(-1) for pirimiphos-methyl and 17.8 and 20.2 microg litre(-1) for benalaxyl in tilled and untilled plots respectively. The cumulative losses of pirimiphos-methyl in surface runoff from tilled and untilled plots with a slope 5% were estimated at only 0.37 and 0.59% of the initial applied active ingredient, respectively, while for plots with a slope 0% the percentages were 0.013 and 0.018%. For benalaxyl the corresponding values from tilled and untilled plots were 1.69 and 1.76% (slope 5%), and 0.062 and 0.085 (slope 0%). Degradation of the pesticides in the topsoil was monitored from October 1999 and May 2000. Cultivation of potatoes decreased the half-life of the two pesticides compared to the untilled fields, for pirimiphos-methyl from 16.7 to 9.2 days and for benalaxyl from 26.7 to 12.6 days. The slope of soil surface and the different sorption capacities for the compounds are the main parameters which influenced the transportation of studied pesticides, pirimiphos-methyl and benalaxyl residues via surface water in soil-water systems.


Assuntos
Alanina/análogos & derivados , Alanina/metabolismo , Compostos Organotiofosforados/metabolismo , Resíduos de Praguicidas/metabolismo , Solo/análise , Solanum tuberosum/crescimento & desenvolvimento , Adsorção , Alanina/administração & dosagem , Algoritmos , Coleta de Dados , Modelos Biológicos , Compostos Organotiofosforados/administração & dosagem , Fatores de Tempo , Água/análise , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...