Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8012): 543-554, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750233

RESUMO

Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.


Assuntos
Metástase Neoplásica , Neoplasias , Humanos , Metástase Neoplásica/genética , Neoplasias/genética , Neoplasias/patologia , Animais , Análise de Célula Única
2.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717271

RESUMO

Angle-resolved photoemission spectroscopy (ARPES) is a technique used to map the occupied electronic structure of solids. Recent progress in x-ray focusing optics has led to the development of ARPES into a microscopic tool, permitting the electronic structure to be spatially mapped across the surface of a sample. This comes at the expense of a time-consuming scanning process to cover not only a three-dimensional energy-momentum (E, kx, ky) space but also the two-dimensional surface area. Here, we implement a protocol to autonomously search both k- and real-space in order to find positions of particular interest, either because of their high photoemission intensity or because of sharp spectral features. The search is based on the use of Gaussian process regression and can easily be expanded to include additional parameters or optimization criteria. This autonomous experimental control is implemented on the SGM4 micro-focus beamline of the synchrotron radiation source ASTRID2.

3.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181739

RESUMO

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Assuntos
Melanoma , Humanos , Redes Reguladoras de Genes , Imunoterapia , Melanócitos , Melanoma/tratamento farmacológico , Melanoma/genética , Fator de Transcrição 4/genética , Microambiente Tumoral
4.
Trends Cancer ; 9(11): 897-910, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37453870

RESUMO

Tumors are heterogeneous ecosystems in which cancer cells coexist within a complex tumor immune microenvironment (TIME). The malignant, stromal, and immune cell compartments establish a plethora of bidirectional cell-cell communication crosstalks that influence tumor growth and metastatic dissemination, which we are only beginning to understand. Cancer cells either co-opt or promote the formation of new blood and lymphatic vessels to cope with their need for nutrients and oxygen. Recent studies have highlighted additional key roles for the tumor vasculature and have identified the perivascular niche as a cellular hub, where intricate and dynamic cellular interactions promote cancer stemness, immune evasion, dormancy, and metastatic spreading. Here, we review these findings, and discuss how they may be exploited therapeutically.


Assuntos
Ecossistema , Neoplasias , Humanos , Neoplasias/patologia , Comunicação Celular , Microambiente Tumoral
6.
Nature ; 610(7930): 190-198, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131018

RESUMO

Although melanoma is notorious for its high degree of heterogeneity and plasticity1,2, the origin and magnitude of cell-state diversity remains poorly understood. Equally, it is unclear whether growth and metastatic dissemination are supported by overlapping or distinct melanoma subpopulations. Here, by combining mouse genetics, single-cell and spatial transcriptomics, lineage tracing and quantitative modelling, we provide evidence of a hierarchical model of tumour growth that mirrors the cellular and molecular logic underlying the cell-fate specification and differentiation of the embryonic neural crest. We show that tumorigenic competence is associated with a spatially localized perivascular niche, a phenotype acquired through an intercellular communication pathway established by endothelial cells. Consistent with a model in which only a fraction of cells are fated to fuel growth, temporal single-cell tracing of a population of melanoma cells with a mesenchymal-like state revealed that these cells do not contribute to primary tumour growth but, instead, constitute a pool of metastatic initiating cells that switch cell identity while disseminating to secondary organs. Our data provide a spatially and temporally resolved map of the diversity and trajectories of melanoma cell states and suggest that the ability to support growth and metastasis are limited to distinct pools of cells. The observation that these phenotypic competencies can be dynamically acquired after exposure to specific niche signals warrant the development of therapeutic strategies that interfere with the cancer cell reprogramming activity of such microenvironmental cues.


Assuntos
Proliferação de Células , Melanoma , Metástase Neoplásica , Animais , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Reprogramação Celular , Células Endoteliais , Melanoma/genética , Melanoma/patologia , Mesoderma/patologia , Camundongos , Metástase Neoplásica/patologia , Crista Neural/embriologia , Fenótipo , Análise de Célula Única , Transcriptoma , Microambiente Tumoral
8.
Nat Cell Biol ; 24(6): 940-953, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654839

RESUMO

Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.


Assuntos
Fibroblastos Associados a Câncer , Melanoma , Neoplasias Pancreáticas , Animais , Fibroblastos Associados a Câncer/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/patologia
9.
Neuro Oncol ; 24(12): 2133-2145, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35639831

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive primary brain tumor. Its cellular composition is very heterogeneous, with cells exhibiting stem-cell characteristics (GSCs) that co-determine therapy resistance and tumor recurrence. Bone Morphogenetic Protein (BMP)-4 promotes astroglial and suppresses oligodendrocyte differentiation in GSCs, processes associated with superior patient prognosis. We characterized variability in cell viability of patient-derived GBM cultures in response to BMP4 and, based on single-cell transcriptome profiling, propose predictive positive and early-response markers for sensitivity to BMP4. METHODS: Cell viability was assessed in 17 BMP4-treated patient-derived GBM cultures. In two cultures, one highly-sensitive to BMP4 (high therapeutic efficacy) and one with low-sensitivity, response to treatment with BMP4 was characterized. We applied single-cell RNA-sequencing, analyzed the relative abundance of cell clusters, searched for and identified the aforementioned two marker types, and validated these results in all 17 cultures. RESULTS: High variation in cell viability was observed after treatment with BMP4. In three cultures with highest sensitivity for BMP4, a substantial new cell subpopulation formed. These cells displayed decreased cell proliferation and increased apoptosis. Neuronal differentiation was reduced most in cultures with little sensitivity for BMP4. OLIG1/2 levels were found predictive for high sensitivity to BMP4. Activation of ribosomal translation (RPL27A, RPS27) was up-regulated within one day in cultures that were very sensitive to BMP4. CONCLUSION: The changes in composition of patient-derived GBM cultures obtained after treatment with BMP4 correlate with treatment efficacy. OLIG1/2 expression can predict this efficacy, and upregulation of RPL27A and RPS27 are useful early-response markers.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proliferação de Células , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , RNA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Diferenciação Celular , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo
10.
Nature ; 605(7911): 747-753, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35585241

RESUMO

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Assuntos
Neoplasias da Mama , Metástase Neoplásica , Fosfoglicerato Desidrogenase , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Inativação Gênica , Humanos , Camundongos , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo
11.
FEBS J ; 289(5): 1352-1368, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33999497

RESUMO

Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.


Assuntos
Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Proteínas de Neoplasias/genética , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Diferenciação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Terapia de Alvo Molecular/métodos , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Transcrição/metabolismo
12.
Ann N Y Acad Sci ; 1506(1): 142-163, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34850398

RESUMO

The test for the cancer stem cell (CSC) hypothesis is to find a target expressed on all, and only CSCs in a patient tumor, then eliminate all cells with that target that eliminates the cancer. That test has not yet been achieved, but CSC diagnostics and targets found on CSCs and some other cells have resulted in a few clinically relevant therapies. However, it has become apparent that eliminating the subset of tumor cells characterized by self-renewal properties is essential for long-term tumor control. CSCs are able to regenerate and initiate tumor growth, recapitulating the heterogeneity present in the tumor before treatment. As great progress has been made in identifying and elucidating the biology of CSCs as well as their interactions with the tumor microenvironment, the time seems ripe for novel therapeutic strategies that target CSCs to find clinical applicability. On May 19-21, 2021, researchers in cancer stem cells met virtually for the Keystone eSymposium "Cancer Stem Cells: Advances in Biology and Clinical Translation" to discuss recent advances in the understanding of CSCs as well as clinical efforts to target these populations.


Assuntos
Congressos como Assunto/tendências , Neoplasias/genética , Células-Tronco Neoplásicas/fisiologia , Relatório de Pesquisa , Pesquisa Translacional Biomédica/tendências , Microambiente Tumoral/fisiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/metabolismo , Pesquisa Translacional Biomédica/métodos
13.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34287642

RESUMO

The ability to adapt to environmental stress, including therapeutic insult, contributes to tumor evolution and drug resistance. In suboptimal conditions, the integrated stress response (ISR) promotes survival by dampening cytosolic translation. We show that ISR-dependent survival also relies on a concomitant up-regulation of mitochondrial protein synthesis, a vulnerability that can be exploited using mitoribosome-targeting antibiotics. Accordingly, such agents sensitized to MAPK inhibition, thus preventing the development of resistance in BRAFV600E melanoma models. Additionally, this treatment compromised the growth of melanomas that exhibited elevated ISR activity and resistance to both immunotherapy and targeted therapy. In keeping with this, pharmacological inactivation of ISR, or silencing of ATF4, rescued the antitumoral response to the tetracyclines. Moreover, a melanoma patient exposed to doxycycline experienced complete and long-lasting response of a treatment-resistant lesion. Our study indicates that the repurposing of mitoribosome-targeting antibiotics offers a rational salvage strategy for targeted therapy in BRAF mutant melanoma and a therapeutic option for NRAS-driven and immunotherapy-resistant tumors.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Ribossomos Mitocondriais/efeitos dos fármacos , Idoso , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Melanoma/genética , Melanoma/mortalidade , Camundongos Endogâmicos C57BL , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Tigeciclina/farmacologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Cell ; 39(8): 1135-1149.e8, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143978

RESUMO

Therapy resistance arises from heterogeneous drug-tolerant persister cells or minimal residual disease (MRD) through genetic and nongenetic mechanisms. A key question is whether specific molecular features of the MRD ecosystem determine which of these two distinct trajectories will eventually prevail. We show that, in melanoma exposed to mitogen-activated protein kinase therapeutics, emergence of a transient neural crest stem cell (NCSC) population in MRD concurs with the development of nongenetic resistance. This increase relies on a glial cell line-derived neurotrophic factor-dependent signaling cascade, which activates the AKT survival pathway in a focal adhesion kinase (FAK)-dependent manner. Ablation of the NCSC population through FAK inhibition delays relapse in patient-derived tumor xenografts. Strikingly, all tumors that ultimately escape this treatment exhibit resistance-conferring genetic alterations and increased sensitivity to extracellular signal-regulated kinase inhibition. These findings identify an approach that abrogates the nongenetic resistance trajectory in melanoma and demonstrate that the cellular composition of MRD deterministically imposes distinct drug resistance evolutionary paths.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Melanoma/tratamento farmacológico , Melanoma/genética , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Imidazóis/farmacologia , Melanoma/patologia , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Crista Neural/patologia , Oximas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Genome Res ; 30(12): 1815-1834, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32732264

RESUMO

Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4 Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.


Assuntos
Biologia Computacional/métodos , Melanoma/genética , Peixe-Zebra/genética , Animais , Aprendizado Profundo , Cães , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Cavalos , Humanos , Camundongos , Suínos
16.
Cell Rep ; 31(11): 107765, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553158

RESUMO

Tumor cell plasticity, including transdifferentiation, is thought to be a key driver of therapy failure, tumor dormancy, and metastatic dissemination. Although melanoma cells have been shown to adopt various phenotypic features in vitro, direct in vivo evidence of metastatic cell plasticity remains sparse. Here, we combine lineage tracing in a spontaneous metastatic mouse model of melanoma, advanced imaging, and single-cell RNA sequencing approaches to search for pathophysiologically relevant melanoma cellular states. We identify melanoma cells in intravascular niches of various metastatic organs. These cells are quiescent, are negative for characteristic melanoma markers, and acquire endothelial cell features. We replicate the endothelial transdifferentiation (EndT) finding in another mouse model and provide evidence of EndT in BRAFV600E-metastatic biopsies from human lung, brain, and small intestine, thus highlighting the clinical relevance of these findings. The tumor-vasculature pattern described herein may contribute to melanoma dormancy within metastatic organs and represent a putative target for therapies.


Assuntos
Transdiferenciação Celular/fisiologia , Células Endoteliais/citologia , Melanoma/patologia , Metástase Neoplásica/patologia , Microambiente Tumoral/fisiologia , Animais , Biomarcadores Tumorais/genética , Diferenciação Celular/fisiologia , Melanoma/metabolismo , Camundongos Transgênicos
17.
Science ; 366(6468): 1029-1034, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31754005

RESUMO

The Hippo signaling pathway and its two downstream effectors, the YAP and TAZ transcriptional coactivators, are drivers of tumor growth in experimental models. Studying mouse models, we show that YAP and TAZ can also exert a tumor-suppressive function. We found that normal hepatocytes surrounding liver tumors displayed activation of YAP and TAZ and that deletion of Yap and Taz in these peritumoral hepatocytes accelerated tumor growth. Conversely, experimental hyperactivation of YAP in peritumoral hepatocytes triggered regression of primary liver tumors and melanoma-derived liver metastases. Furthermore, whereas tumor cells growing in wild-type livers required YAP and TAZ for their survival, those surrounded by Yap- and Taz-deficient hepatocytes were not dependent on YAP and TAZ. Tumor cell survival thus depends on the relative activity of YAP and TAZ in tumor cells and their surrounding tissue, suggesting that YAP and TAZ act through a mechanism of cell competition to eliminate tumor cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Colangiocarcinoma/patologia , Via de Sinalização Hippo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas Experimentais/patologia , Melanoma/metabolismo , Melanoma/secundário , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Transativadores/economia , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Carga Tumoral , Proteínas de Sinalização YAP
18.
Cancer Cell ; 35(1): 46-63.e10, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30581152

RESUMO

Modulators of mRNA stability are not well understood in melanoma, an aggressive tumor with complex changes in the transcriptome. Here we report the ability of p62/SQSTM1 to extend mRNA half-life of a spectrum of pro-metastatic factors. These include FERMT2 and other transcripts with no previous links to melanoma. Transcriptomic, proteomic, and interactomic analyses, combined with validation in clinical biopsies and mouse models, identified a selected set of RNA-binding proteins (RBPs) recruited by p62, with IGF2BP1 as a key partner. This p62-RBP interaction distinguishes melanoma from other tumors where p62 controls autophagy or oxidative stress. The relevance of these data is emphasized by follow-up analyses of patient prognosis revealing p62 and FERMT2 as adverse determinants of disease-free survival.


Assuntos
Melanoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , RNA Mensageiro/química , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Proteínas de Membrana/química , Camundongos , Proteínas de Neoplasias/química , Transplante de Neoplasias , Mapas de Interação de Proteínas , Proteômica/métodos , Estabilidade de RNA , Análise Serial de Tecidos
19.
Cell ; 174(4): 843-855.e19, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30017245

RESUMO

Many patients with advanced cancers achieve dramatic responses to a panoply of therapeutics yet retain minimal residual disease (MRD), which ultimately results in relapse. To gain insights into the biology of MRD, we applied single-cell RNA sequencing to malignant cells isolated from BRAF mutant patient-derived xenograft melanoma cohorts exposed to concurrent RAF/MEK-inhibition. We identified distinct drug-tolerant transcriptional states, varying combinations of which co-occurred within MRDs from PDXs and biopsies of patients on treatment. One of these exhibited a neural crest stem cell (NCSC) transcriptional program largely driven by the nuclear receptor RXRG. An RXR antagonist mitigated accumulation of NCSCs in MRD and delayed the development of resistance. These data identify NCSCs as key drivers of resistance and illustrate the therapeutic potential of MRD-directed therapy. They also highlight how gene regulatory network architecture reprogramming may be therapeutically exploited to limit cellular heterogeneity, a key driver of disease progression and therapy resistance.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/tratamento farmacológico , Neoplasia Residual/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor X Retinoide gama/antagonistas & inibidores , Animais , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos SCID , Mutação , Neoplasia Residual/metabolismo , Neoplasia Residual/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Commun ; 8(1): 2249, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269732

RESUMO

Melanomas are well-known for their altered mRNA expression profiles. Yet, the specific contribution of mRNA binding proteins (mRBPs) to melanoma development remains unclear. Here we identify a cluster of melanoma-enriched genes under the control of CUGBP Elav-like family member 1 (CELF1). CELF1 was discovered with a distinct prognostic value in melanoma after mining the genomic landscape of the 692 known mRBPs across different cancer types. Genome-wide transcriptomic, proteomic, and RNA-immunoprecipitation studies, together with loss-of-function analyses in cell lines, and histopathological evaluation in clinical biopsies, revealed an intricate repertoire of CELF1-RNA interactors with minimal overlap with other malignancies. This systems approach uncovered the oncogene DEK as an unexpected target and downstream effector of CELF1. Importantly, CELF1 and DEK were found to represent early-induced melanoma genes and adverse indicators of overall patient survival. These results underscore novel roles of CELF1 in melanoma, illustrating tumor type-restricted functions of RBPs in cancer.


Assuntos
Proteínas CELF1/fisiologia , Melanoma/genética , Oncogenes , Biologia de Sistemas , Regiões 3' não Traduzidas , Biópsia , Proteínas CELF1/genética , Proteínas CELF1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Imunoprecipitação , Melanoma/patologia , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Prognóstico , Proteômica , RNA Neoplásico/genética , Análise de Sobrevida , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...