Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 2): 129273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211922

RESUMO

In this paper, lignocellulosic fibers and cellulose microfibrils (CMFs) were extracted from palmyra fruit peduncle waste and investigated as naturally derived cellulosic materials for their potential use as reinforcement materials in composite applications. The physicochemical, mechanical, and thermal properties of the extracted fiber were studied. Physical and morphological analysis results revealed an extracted fiber diameter of 82.5 µm with a very rough surface, providing excellent interfacial bonding performance with the polymer matrix. Chemical, mechanical, and thermal results showed that the fibers consist mainly of cellulose as their crystallized phase, with a cellulose content of 56.5 wt% and a tensile strength of 693.3 MPa, along with thermal stability up to 252 °C. The chemically extracted CMFs exhibit a short, rough-surfaced, cylindrical cellulose structure with a diameter range of 10-15 µm. These CMFs demonstrate excellent thermal stability, withstanding temperatures up to 330 °C. Furthermore, the formation of CMFs is evident from a substantial increase in the crystallinity index, which increased from 58.2 % in the raw fibers to 78.2 % in the CMFs. FT-IR analysis further confirms the successful removal of non-cellulosic materials through chlorine-free chemical treatments. These findings strongly support the potential use of extracted fibers and CMFs as reinforcement materials in polymers.


Assuntos
Frutas , Microfibrilas , Frutas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química , Polímeros/análise
2.
Int J Biol Macromol ; 249: 126119, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541473

RESUMO

The proper disposal of disposable synthetic plastic food packaging materials presents a significant challenge for both the environment and the solid waste management community. To address this issue, an antibacterial-based high-strength bio-composite serves as the optimal alternative to conventional packaging materials. This study aims to produce a hybrid material of AgNPs-carboxyl cellulose nanocrystals (AgNPs-CCNCs), obtained from used egg carton boxes (UECBs), through bio acid hydrolysis and an in-situ generation process. Furthermore, AgNPs- carboxyl cellulose nanofibers (AgNPs-CCNFs) will be synthesized through a combination of bio acid hydrolysis and ball milling, followed by an additional in-situ generation step. The AgNPs-carboxyl nanocellulose (AgNPs-CCNCs, and AgNPs-CCNFs) exhibited excellent crystallinity index, morphology, thermal, and antibacterial properties. The morphological analysis was performed by electron microscopy, and the results showed the uniform distribution and spherical form of AgNPs appearing over the carboxyl nanocellulose through the in-situ generation process, which was confirmed through XRD analysis. The study further explores the impact of AgNPs-carboxyl nanocellulose on the mechanical, chemical, antibacterial, and thermal properties of the PVA matrix. The results demonstrate that the bio-nanocomposite film offers opportunities for utilization in active packaging applications.


Assuntos
Nanocompostos , Nanopartículas , Embalagem de Alimentos , Celulose/química , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA