Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(3): e0264785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298502

RESUMO

The variability of clinical course and prognosis of COVID-19 highlights the necessity of patient sub-group risk stratification based on clinical data. In this study, clinical data from a cohort of Indian COVID-19 hospitalized patients is used to develop risk stratification and mortality prediction models. We analyzed a set of 70 clinical parameters including physiological and hematological for developing machine learning models to identify biomarkers. We also compared the Indian and Wuhan cohort, and analyzed the role of steroids. A bootstrap averaged ensemble of Bayesian networks was also learned to construct an explainable model for discovering actionable influences on mortality and days to outcome. We discovered blood parameters, diabetes, co-morbidity and SpO2 levels as important risk stratification features, whereas mortality prediction is dependent only on blood parameters. XGboost and logistic regression model yielded the best performance on risk stratification and mortality prediction, respectively (AUC score 0.83, AUC score 0.92). Blood coagulation parameters (ferritin, D-Dimer and INR), immune and inflammation parameters IL6, LDH and Neutrophil (%) are common features for both risk and mortality prediction. Compared with Wuhan patients, Indian patients with extreme blood parameters indicated higher survival rate. Analyses of medications suggest that a higher proportion of survivors and mild patients who were administered steroids had extreme neutrophil and lymphocyte percentages. The ensemble averaged Bayesian network structure revealed serum ferritin to be the most important predictor for mortality and Vitamin D to influence severity independent of days to outcome. The findings are important for effective triage during strains on healthcare infrastructure.


Assuntos
COVID-19/mortalidade , Hospitalização/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/etiologia , Criança , China/epidemiologia , Feminino , Humanos , Índia/epidemiologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Medição de Risco/métodos , Fatores de Risco , Adulto Jovem
2.
J Chem Sci (Bangalore) ; 134(1): 2, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34955617

RESUMO

Research in molecular sciences witnessed the rise and fall of Artificial Intelligence (AI)/ Machine Learning (ML) methods, especially artificial neural networks, few decades ago. However, we see a major resurgence in the use of modern ML methods in scientific research during the last few years. These methods have had phenomenal success in the areas of computer vision, speech recognition, natural language processing (NLP), etc. This has inspired chemists and biologists to apply these algorithms to problems in natural sciences. Availability of high performance Graphics Processing Unit (GPU) accelerators, large datasets, new algorithms, and libraries has enabled this surge. ML algorithms have successfully been applied to various domains in molecular sciences by providing much faster and sometimes more accurate solutions compared to traditional methods like Quantum Mechanical (QM) calculations, Density Functional Theory (DFT) or Molecular Mechanics (MM) based methods, etc. Some of the areas where the potential of ML methods are shown to be effective are in drug design, prediction of high-level quantum mechanical energies, molecular design, molecular dynamics materials, and retrosynthesis of organic compounds, etc. This article intends to conceptually introduce various modern ML methods and their relevance and applications in computational natural sciences. Synopsis Recent surge in the application of machine learning (ML) methods in fundamental sciences has led to a perspective that these methods may become important tools in chemical science. This perspective provides an overview of the modern ML methods and their successful applications in chemistry during the last few years.

3.
Front Public Health ; 9: 626697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055710

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, is an acute respiratory disease that has been classified as a pandemic by the World Health Organization (WHO). The sudden spike in the number of infections and high mortality rates have put immense pressure on the public healthcare systems. Hence, it is crucial to identify the key factors for mortality prediction to optimize patient treatment strategy. Different routine blood test results are widely available compared to other forms of data like X-rays, CT-scans, and ultrasounds for mortality prediction. This study proposes machine learning (ML) methods based on blood tests data to predict COVID-19 mortality risk. A powerful combination of five features: neutrophils, lymphocytes, lactate dehydrogenase (LDH), high-sensitivity C-reactive protein (hs-CRP), and age helps to predict mortality with 96% accuracy. Various ML models (neural networks, logistic regression, XGBoost, random forests, SVM, and decision trees) have been trained and performance compared to determine the model that achieves consistently high accuracy across the days that span the disease. The best performing method using XGBoost feature importance and neural network classification, predicts with an accuracy of 90% as early as 16 days before the outcome. Robust testing with three cases based on days to outcome confirms the strong predictive performance and practicality of the proposed model. A detailed analysis and identification of trends was performed using these key biomarkers to provide useful insights for intuitive application. This study provide solutions that would help accelerate the decision-making process in healthcare systems for focused medical treatments in an accurate, early, and reliable manner.


Assuntos
COVID-19 , Sistemas de Apoio a Decisões Clínicas , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...