Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(8): 261, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985223

RESUMO

CONTEXT: Multiwalled carbon nanotubes (MWCNTs) functionalized with lysine via 1,3-dipolar cycloaddition and conjugated to galactose or mannose are potential nanocarriers that can effectively bind to the lectin receptor in MDA-MB-231 or MCF-7 breast cancer cells. In this work, a method based on molecular dynamics (MD) simulation was used to predict the interaction of these functionalized MWCNTs with doxorubicin and obtain structural evidence that allows a better understanding of the drug loading and release process. The MD simulations showed that while doxorubicin only interacted with pristine MWCNTs through π-π stacking interactions, functionalized MWCNTs were also able to establish hydrogen bonds, suggesting that the functionalized groups improve doxorubicin loading. Moreover, the elevated adsorption levels observed for functionalized nanotubes further support this enhancement in loading efficiency. MD simulations also shed light on the intratumoral pH-specific release of doxorubicin from functionalized MWCNTs, which is induced by protonation of the daunosamine moiety. The simulations show that this change in protonation leads to a lower absorption of doxorubicin to the MWCNTs. The MD studies were then experimentally validated, where functionalized MWCNTs showed improved dispersion in aqueous medium compared to pristine MWCNTs and, in agreement with the computational predictions, increased drug loading capacity. Doxorubicin-loaded functionalized MWCNTs demonstrated specific release of doxorubicin in tumor microenvironment (pH = 5.0) with negligible release in the physiological pH (pH = 7.4). Furthermore, doxorubicin-free MWNCT nanoformulations exhibited insignificant cytotoxicity. The experimental studies yielded nearly identical results to the MD studies, underlining the usefulness of the method. Our functionalized MWCNTs represent promising non-toxic nanoplatforms with enhanced aqueous dispersibility and the potential for conjugation with ligands for targeted delivery of anti-cancer drugs to breast cancer cells. METHODS: The computational model of a pristine carbon nanotube was created with the buildCstruct 1.2 Python script. The lysinated functionalized groups were added with PyMOL and VMD. The carbon nanotubes and doxorubicin molecules were parameterized using the general AMBER force field, and RESP charges were determined using Gaussian 09. Molecular dynamics simulations were carried out with the AMBER 20 software package. Adsorption levels were calculated using the water-shell function of cpptraj. Cytotoxicity was evaluated via a MTT assay using MDA-MB-231 and MCF-7 breast cancer cells. Drug uptake of doxorubicin and doxorubicin-loaded MWCNTs was measured by fluorescence microscopy.


Assuntos
Doxorrubicina , Simulação de Dinâmica Molecular , Nanotubos de Carbono , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Nanotubos de Carbono/química , Humanos , Lisina/química , Portadores de Fármacos/química , Células MCF-7 , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem
2.
J Mater Sci Mater Med ; 35(1): 24, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526738

RESUMO

Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1ß, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.


Assuntos
Curcumina , Nanotubos de Carbono , Humanos , Curcumina/farmacologia , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Antioxidantes/farmacologia , Inflamação , Anti-Inflamatórios/farmacologia
3.
Nanoscale ; 15(36): 14698-14716, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37655476

RESUMO

Pancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. The current studies emphasized the ability of GQDs to selectively target pancreatic cancer cells by overexpressing binding receptors on the cell surface. Additionally, this review discussed the uses of GQDs as drug delivery vehicles for the controlled and targeted release of therapeutics for pancreatic cancer cells. Finally, the potential of GQDs as imaging agents for pancreatic cancer detection and monitoring has been discussed. Overall, multifunctional GQDs showed great promise as a versatile platform for the diagnosis and treatment of pancreatic cancer. Further investigation of multifunctional GQDs in terms of their potential and optimization in the context of pancreatic cancer therapy is needed.


Assuntos
Grafite , Neoplasias Pancreáticas , Pontos Quânticos , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Pancreáticas
4.
Curr Med Chem ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37711015

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) has gained interest as a therapeutic target for type 2 diabetes and obesity. Besides metabolic signalling, PTP1B is a positive regulator of signalling pathways linked to ErbB2-induced breast tumorigenesis. Substantial evidence proves that its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment. Therefore, huge research is being carried out on PTP1B inhibitors and their activity against breast cancer development. To date, only two PTP1B inhibitors, viz. ertiprotafib and trodusquemine, have entered clinical trials. The discovery of selective inhibitors of PTP1B could open a new avenue in breast cancer treatment. In this review, we provide an extensive overview on the involvement of PTP1B in breast cancer, its pathophysiology, with special attention on the discovery and development of various natural as well as synthetic PTP1B inhibitors. This study will provide significant information to the researchers developing PTP1B inhibitors for breast cancer treatment.

5.
Bioorg Chem ; 138: 106658, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331170

RESUMO

Multiple malignancies exhibit aberrant FASN expression, associated with enhanced de novo lipogenesis to meet the metabolic demands of rapidly proliferating tumour cells. Furthermore, elevated FASN expression has been linked to tumour aggressiveness and poor prognosis in a variety of malignant tumours, making FASN is an attractive target for anticancer drug discovery. Herein, we report the de novo design and synthesis of (2-(2-hydroxyphenyl)-1H-benzo[d]imidazol-5-yl)(piperazin-1-yl)methanone derivatives as novel FASN inhibitors with potential therapeutic applications in breast and colorectal cancers. Twelve (2-(2-hydroxyphenyl)-1H-benzo[d]imidazol-5-yl)(piperazin-1-yl)methanone derivatives (CTL) were synthesized and evaluated for FASN inhibition and cytotoxicity against colon cancer (HCT-116, Caco-2 cell lines), breast cancer (MCF-7 cell line) and normal cell line (HEK-293). Compounds CTL-06 and CTL-12 were chosen as the most promising lead molecules based on FASN inhibition and selective cytotoxicity profiles against colon and breast cancer cell lines. Compounds CTL-06 and CTL-12 demonstrate promising FASN inhibitory activity at IC50 of 3 ± 0.25 µM and 2.5 ± 0.25 µM when compared to the FASN inhibitor orlistat, which has an IC50 of 13.5 ± 1.0 µM. Mechanistic investigations on HCT-116 revealed that CTL-06 and CTL-12 treatment led to cell cycle arrest in Sub-G1/S phase along with apoptosis induction. Western blot studies indicated that CTL-06 and CTL-12 inhibited FASN expression in a dose-dependent manner. CTL-06 and CTL-12 treatment of HCT-116 cells enhanced caspase-9 expression in a dose-dependent manner, while upregulating proapoptotic marker Bax and downregulating antiapoptotic Bcl-xL. Molecular docking experiments of CTL-06 and CTL-12 with FASN enzyme revealed the mode of binding of these analogues in the KR domain of the enzyme.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Simulação de Acoplamento Molecular , Células CACO-2 , Células HEK293 , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Imidazóis/farmacologia , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/química
6.
Pharmaceutics ; 15(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36839659

RESUMO

Microwave-assisted synthetic methods have emerged as a popular technique for surface modification and the functionalization of multi-walled carbon nanotubes (MWCNTs) for diverse drug delivery applications. Microwave-induced functionalization of MWCNTs provides a high functionalization and requires less time than conventional techniques. Microwave methods are simple, fast, and effective for the covalent and noncovalent conjugation of MWCNTs with various biomolecules and polymers. The present review focuses on the synthetic and drug delivery applications of microwave irradiation techniques (MITs) for the functionalization of MWCNTs, using amino acids and other molecular frameworks containing amino groups, vitamins, proteins, epoxy moieties, metal nanoparticles, and polymers.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36644868

RESUMO

INTRODUCTION: Fatty acid synthase (FASN), is a key metabolic enzyme involved in fatty acid biosynthesis and is an essential target for multiple disease progressions like cancer, obesity, NAFLD, etc. Aberrant expression of FASN is associated with deregulated energy metabolism of cells in these diseases. AREA COVERED: This article provides a summary of the most recent developments in the discovery of novel FASN inhibitors with potential therapeutic uses in cancer, obesity, and other metabolic disorders such as nonalcoholic fatty liver disease from 2016 to the present. The recently published patent applications and forthcoming clinical data of FASN inhibitors from both academia and the pharma industries are also highlighted in this study. EXPERT OPINION: The implication of FASN in multiple diseases has provided an impetus for developing novel inhibitors by both pharma companies and academia. Critical analysis of the patent literature reveals the exploration of diverse molecular scaffolds to identify potential FASN inhibitors that target the different catalytic domains of the enzyme. In spite of these multifaceted efforts, only one molecule, TVB-2640, has reached phase II trials for nonalcoholic steatohepatitis (NASH) and many malignancies. However, thecombined efforts of pharma companies to produce several FASN inhibitors might facilitate the clinical translation of this unique class of inhibitors. Nevertheless, concerted efforts towards developing multiple FASN inhibitors by pharma companies might facilitate the clinical translation of this novel class of inhibitors.

8.
Chem Biol Drug Des ; 101(2): 395-407, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36065591

RESUMO

Fatty acid synthase (FASN) is one of the enzymes required for fatty acid biosynthesis and is expressed as low or absent in most normal cells/tissues. However, this enzyme is upregulated in various cancer cells; hence, it can act as an important target to design and develop novel FASN inhibitors for cancer therapy. In the present investigation, a series of structurally diverse compounds that possessed FASN inhibitory activities were subjected to classification analysis using different algorithms such as support vector machine, decision tree, Naïve Bayes and random forest. The physicochemical descriptors and MACCS fingerprints were calculated using PaDEL software, and the WEKA software was utilized for the classification model building. The statistical parameters/confusion matrix calculated from the analysis revealed that the selected models have significant predictive performances. The results showed that the topological properties of the molecules are the main determinant for the activity classification. The key descriptors comprised of hydrogen bonding groups, especially acceptor (nHBAcc, minHBint9, minHBint5 and nwHBa), charge on the topological surface of the molecules (JGI10 & GGI2), ionization potential (GATS5i and GATS1i) and branching and distance between the groups (ETA_Eta_B_RC) are significantly contributed in the classification models. Further, the presence of heteroatoms (MACCSFP82, MACCSFP93 and MACCSFP131), especially nitrogen atom(s) and hydrogen bond acceptor groups (N-N group, NC(=O)N, N-C(=O)), actively contributed to the inhibitory activities. The results concluded that the topological polar properties concentrated in a specific region have significant FASN inhibitory activity. Hence, these results shall be used to develop novel molecules with increased FASN inhibitory activity.


Assuntos
Algoritmos , Software , Teorema de Bayes , Algoritmo Florestas Aleatórias , Ácido Graxo Sintases
9.
Life (Basel) ; 12(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431014

RESUMO

In men, prostate cancer (PC) is the most frequently diagnosed cancer, causing an estimated 375,000 deaths globally. Currently, existing therapies for the treatment of PC, notably metastatic cases, have limited efficacy due to drug resistance and problematic adverse effects. Therefore, it is imperative to discover and develop novel drugs for treating PC that are efficacious and do not produce intolerable adverse or toxic effects. Condensed quinolines are naturally occurring anticancer compounds. In this study, we determined the in vitro efficacy of IND-2 (4-chloro-2-methylpyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolone) in the PC lines, PC-3 and DU-145. IND-2 significantly inhibited the proliferation of PC-3 and DU-145, with IC50 values of 3 µM and 3.5 µM, respectively. The incubation of PC-3 cells with 5 and 10 µM of IND-2 caused the loss of the mitochondrial membrane potential in PC-3 cells. Furthermore, IND-2, at 5 µM, increased the expression of cleaved caspase-3, cleaved caspase-7 and cleaved poly (ADP-ribose) polymerase (PARP). The incubation of PC-3 cells with 5 µM of IND-2 significantly decreased the expression of the apoptotic protein, B-cell lymphoma 2 (Bcl-2). Furthermore, 5 and 10 µM of IND-2 produced morphological changes in PC-3 cells characteristic of apoptosis. Interestingly, IND-2 (2.5, 5 and 10 µM) also induced mitotic catastrophe in PC-3 cells, characterized by the accumulation of multinuclei. The incubation of DU-145 cells with 1.25 and 5 µM of IND-2 significantly increased the levels of reactive oxygen species (ROS). Finally, IND-2, at 10 µM, inhibited the catalytic activity of topoisomerase IIα. Overall, our findings suggest that IND-2 could be a potential lead compound for the development of more efficacious compounds for the treatment of PC.

10.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364286

RESUMO

Multiwalled carbon nanotubes (MWCNTs) are elongated, hollow cylindrical nanotubes made of sp2 carbon. MWCNTs have attracted significant attention in the area of drug delivery due to their high drug-loading capacity and large surface area. Furthermore, they can be linked to bioactive ligands molecules via covalent and noncovalent bonds that allow for the targeted delivery of anticancer drugs such as doxorubicin. The majority of methodologies reported for the functionalization of MWCNTs for drug delivery are quite complex and use expensive linkers and ligands. In the present study, we report a simple, cost-effective approach for functionalizing MWCNTs with the carbohydrate ligands, galactose (GA), mannose (MA) and lactose (LA), using lysine as a linker. The doxorubicin (Dox)-loaded functionalized MWCNTs were characterized using FT-IR, NMR, Raman, XRD and FE-SEM. The drug-loaded MWCNTs were evaluated for drug loading, drug release and cell toxicity in vitro, in breast cancer cells. The results indicated that the carbohydrate-modified lysinated MWCNTs had greater Dox loading capacity, compared to carboxylated MWCNTs (COOHMWCNTs) and lysinated MWCNTs (LyMWCNTs). In vitro drug release experiments indicated that the carbohydrate functionalized LyMWCNTs had higher Dox release at pH 5.0, compared to the physiological pH of 7.4, over 120 h, indicating that they are suitable candidates for targeting the tumor microenvironment as a result of their sustained release profile of Dox. Doxorubicin-loaded galactosylated MWCNTs (Dox-GAMWCNTs) and doxorubicin loaded mannosylated MWCNTs (Dox-MAMWCNTs) had greater anticancer efficacy and cellular uptake, compared to doxorubicin-loaded lactosylated MWCNTs (Dox-LAMWCNTs) and pure Dox, in MDA-MB231 and MCF7 breast cancer cells. However, neither the ligand conjugated multiwall blank carbon nanotubes (GAMWCNTs, MAMWCNTs and LAMWCNTs) nor the lysinated multiwalled blank carbon nanotubes produced significant toxicity in the normal cells. Our results suggest that sugar-tethered multiwalled carbon nanotubes, especially the galactosylated (Dox-GAMWCNTs) and mannosylated (Dox-MAMWCNTs) formulations, may be used to improve the targeted delivery of anticancer drugs to breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanotubos de Carbono , Humanos , Feminino , Nanotubos de Carbono/química , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Microambiente Tumoral
11.
Sci Rep ; 11(1): 21576, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732782

RESUMO

Many agents targeting the colchicine binding site in tubulin have been developed as potential anticancer agents. However, none has successfully made it to the clinic, due mainly to dose limiting toxicities and the emergence of multi-drug resistance. Chalcones targeting tubulin have been proposed as a safe and effective alternative. We have shown previously that quinolone chalcones target tubulin and maintain potent anti-proliferative activity vis-à-vis colchicine, while also having high tolerability and low toxicity in mouse models of cancer and refractivity to multi-drug resistance mechanisms. To identify the most effective anticancer chalcone compound, we synthesized 17 quinolone-chalcone derivatives based on our previously published CTR-17 and CTR-20, and then carried out a structure-activity relationship study. We identified two compounds, CTR-21 [((E)-8-Methoxy-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one)] and CTR-32 [((E)-3-(3-(2-ethoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one)] as potential leads, which contain independent moieties that play a significant role in their enhanced activities. At the nM range, CTR-21 and CTR-32 effectively kill a panel of different cancer cells originated from a variety of different tissues including breast and skin. Both compounds also effectively kill multi-drug resistant cancer cells. Most importantly, CTR-21 and CTR-32 show a high degree of selectivity against cancer cells. In silico, both of them dock near the colchicine-binding site with similar energies. Whereas both CTR-21 and CTR-32 effectively prevents tubulin polymerization, leading to the cell cycle arrest at G2/M, CTR-21 has more favorable metabolic properties. Perhaps not surprisingly, the combination of CTR-21 and ABT-737, a Bcl-2 inhibitor, showed synergistic effect in killing cancer cells, since we previously found the "parental" CTR-20 also exhibited synergism. Taken together, CTR-21 can potentially be a highly effective and relatively safe anticancer drug.


Assuntos
Chalconas/química , Desenho de Fármacos/métodos , Quinolonas/química , Relação Estrutura-Atividade , Animais , Apoptose , Linhagem Celular Tumoral , Chalconas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Ligação de Hidrogênio , Leucócitos Mononucleares/metabolismo , Células MCF-7 , Camundongos , Microssomos/química , Paclitaxel/farmacologia , Quinolonas/farmacologia , Tubulina (Proteína)/química , Moduladores de Tubulina/farmacologia
12.
Molecules ; 26(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361570

RESUMO

A novel series of 4-anilinoquinazoline analogues, DW (1-10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Humanos
13.
Front Pharmacol ; 12: 584940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025393

RESUMO

The emergence and rapid spread of novel coronavirus disease (COVID-19) has posed a serious challenge to global public health in 2020. The speed of this viral spread together with the high mortality rate has caused an unprecedented public health crisis. With no antivirals or vaccines available for the treatment of COVID-19, the medical community is presently exploring repositioning of clinically approved drugs for COVID-19. Chloroquine (CQ) and hydroxychloroquine (HCQ) have emerged as potential candidates for repositioning as anti-COVID-19 therapeutics and have received FDA authorization for compassionate use in COVID-19 patients. On March 28, 2020, the U.S. Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for HCQ in the treatment of COVID-19. However, it was later revoked by the FDA on June 15, 2020, after analyzing the emerging scientific data from ongoing clinical trials. Similarly, the World Health Organization (WHO) also conducted a Solidarity trial of chloroquine, hydroxychloroquine, remdesivir, lopinavir, and ritonavir. However, on May 23, 2020, the executive body of the "Solidarity trial" decided to put a temporary hold on the HCQ trial. On June 17, 2020, the WHO abruptly stopped the Solidarity trial of HCQ. The current review strives to examine the basis of compassionate use of CQ and HCQ for the treatment of COVID-19 in terms of literature evidence, establishing the antiviral efficacy of these drugs against corona and related viruses. Furthermore, the review presents a critical analysis of the clinical trial findings and also provides an insight into the dynamically changing decision on the authorization and withdrawal of HCQ as anti-COVID-19 therapy by the U.S. FDA and the WHO. Ultimately, our study necessitates an evidenced-based treatment protocol to confront the ongoing COVID-19 pandemic and not the mere observational study that mislead the public healthcare system, which paralyzes the entire world.

14.
Mini Rev Med Chem ; 20(18): 1820-1837, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32781957

RESUMO

Fatty acid synthase (FASN) is a multifunctional enzyme involved in the production of fatty acids for lipid biosynthesis. FASN is overexpressed in multiple diseases like cancer, viral, nonalcoholic fatty liver disease, and metabolic disorders, making it an attractive target for new drug discovery for these diseases. In cancer, FASN affects the structure and function of the cellular membrane by channelizing with signaling pathways along with the post-translational palmitoylation of proteins. There are several natural and synthetic FASN inhibitors reported in the literature, a few examples are GSK 2194069 (7.7 nM), imidazopyridine (16 nM), epigallocatechin-3-gallate (42.0 µg/ml) and platensimycin (300 nM) but except for TVB-2640, none of the aforementioned inhibitors have made into clinical trials. The present review summarizes the recent advancements made in anticancer drug discovery targeting FASN. Furthermore, the review also provides insights into the medicinal chemistry of small molecule inhibitors targeting different FASN enzyme domains, and also critically analyzes the structural requirements for FASN inhibition with an objective to support rational design and development of new generation FASN inhibitors with clinical potential in diseases like cancer.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ácido Graxo Sintases/metabolismo , Humanos , Modelos Moleculares , Neoplasias/metabolismo
15.
Antiviral Res ; 174: 104695, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846633

RESUMO

Yin Yang 1 (YY1) is a ubiquitous transcription factor with both transcriptional activating and repressing functions. Targeting YY1 is considered as a potential therapeutic strategy for several malignancies. Telomerase Reverse Transcriptase (TERT) is also considered as a potential target for cancer therapeutics. To enable the large-scale screening and identification of potential YY1 targeting drugs, a gastric cancer cell line-based drug screening assay was developed. In a YY1 targeted drug repurpose screen, abacavir sulfate, a nucleoside analog reverse transcriptase inhibitor, known to target TERT was identified to show the feature of activating YY1 mediated transcription. We further explored i) the molecular targets of abacavir, ii) activation pattern of pathways regulated by abacavir in gastric tumors, and iii) therapeutic potential of abacavir for gastric cancer cells. Oncogenic signaling pathways like MYC, HIF1-α, ERK, WNT, E2F, NFκB and NRF1/2 were also found to be highly activated by abacavir. Abacavir was found to have less impact on the viability of gastric cancer cells. Across gastric tumors, we observed the co-activation of TERT, alternative lengthening of telomere (ALT), DNA repair, and the oncogenic pathways MYC, E2F/DP1, ERK, YY1, HIF1α, and NFκB specific gene-sets, in a subset of gastric tumors. The observed connectivity among TERT, DNA repair, and multiple oncogenic pathways indicate the need for the development of combinatorial therapeutics for the gastric tumors with the activated TERT.


Assuntos
Antineoplásicos/farmacologia , Didesoxinucleosídeos/farmacologia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Fator de Transcrição YY1/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Telomerase/antagonistas & inibidores
16.
Bioorg Chem ; 92: 103221, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499261

RESUMO

A series of ten N-(3-(1H-tetrazole-5-yl)phenyl)acetamide derivatives (NM-07 to NM-16) designed from a lead molecule identified previously in our laboratory were synthesized and evaluated for protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Among the synthesized molecules, NM-14, a 5-Cl substituted benzothiazole analogue elicited significant PTP1B inhibition with an IC50 of 1.88 µM against reference standard suramin (IC50 ≥ 10 µM). Furthermore, this molecule also showed good in vivo antidiabetic activity which was comparable to that of standard antidiabetic drugs metformin and glimepiride. Overall, the results of the study clearly reveal that the reported tetrazole derivatives especially NM-14 are valuable prototypes for the development of novel non-carboxylic inhibitors of PTP1B with antidiabetic potential.


Assuntos
Acetamidas/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Tetrazóis/farmacologia , Acetamidas/síntese química , Acetamidas/química , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Ratos , Estreptozocina , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química
17.
Heliyon ; 5(5): e01603, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31193218

RESUMO

A novel series of 3-((2-chloroquinolin-3-yl)methylene)indolin-2-ones were synthesized, using the 'molecular hybridization approach' and evaluated for anticancer efficacy. Eleven 3-((2-chloroquinolin-3-yl)methylene)indolin-2-ones (LM01 to LM11) were synthesized and evaluated for in vitro cytotoxic efficacy in cancer (ovarian, prostate and colon) and two non-cancerous cell lines. Among the 3-((2-chloroquinolin-3-yl)methylene)indolin-2-one derivatives, LM08, with a 6-Cl substitution in the 3-quinolinyl moiety, had selective and potent cytotoxic efficacy in the ovarian cancer cell line A2780. Further mechanistic investigations indicated that LM08 significantly inhibited the clonogenic survival of A2780 cancer cells, which was mediated by inducing apoptosis.

18.
Cancers (Basel) ; 11(5)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126091

RESUMO

Thienopyrimidines containing a thiophene ring fused to pyrimidine are reported to have a wide-spectrum of anticancer efficacy in vitro. Here, we report for the first time that thieno[3,2-d]pyrimidine-based compounds, also known as the RP series, have efficacy in prostate cancer cells. The compound RP-010 was efficacious against both PC-3 and DU145 prostate cancer (PC) cells (IC50 < 1 µM). The cytotoxicity of RP-010 was significantly lower in non-PC, CHO, and CRL-1459 cell lines. RP-010 (0.5, 1, 2, and 4 µM) arrested prostate cancer cells in G2 phase of the cell cycle, and induced mitotic catastrophe and apoptosis in both PC cell lines. Mechanistic studies suggested that RP-010 (1 and 2 µM) affected the wingless-type MMTV (Wnt)/ß-catenin signaling pathway, in association with ß-catenin fragmentation, while also downregulating important proteins in the pathway, including LRP-6, DVL3, and c-Myc. Interestingly, RP-010 (1 and 2 µM) induced nuclear translocation of the negative feedback proteins, Naked 1 and Naked 2, in the Wnt pathway. In addition, RP-010 (0.5, 1, 2 and 4 µM) significantly decreased the migration of PC cells in vitro. Finally, RP-010 did not produce significant toxic effects in zebrafish at concentrations of up to 6 µM. In conclusion, RP-010 may be an efficacious and relatively nontoxic anticancer compound for prostate cancer. Future mechanistic and in vivo efficacy studies are needed to optimize the hit compound RP-010 for lead optimization and clinical use.

19.
Cancers (Basel) ; 10(9)2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181510

RESUMO

Multidrug resistance (MDR) is a continuing clinical problem that limits the efficacy of chemotherapy in cancer. The over expression of the ATP-binding cassette (ABC) family G2 (ABCG2) transporter is one of the main mechanisms that mediates MDR in cancer. Molecular modeling data indicated that cariprazine, a dopamine D2/D3 receptor partial agonist, had a significant binding affinity for ABCG2 transporter with a Glide XP score of -6.515. Therefore, in this in vitro study, we determined the effect of cariprazine on MDR resulting from the overexpression of ABCG2 transporters. Alone, cariprazine, at concentrations up to 20 µM, did not significantly decrease cell viability. Cariprazine, at concentrations ranging from 1 to 10 µM, did not significantly alter the cytotoxicity of mitoxantrone (MX) in the parental non-small cell cancer cell line, H460 and colon cancer cell S1. However, cariprazine (1⁻20 µM) significantly enhanced the efficacy of ABCG2 substrate antineoplastic drug MX in the ABCG2-overexpressing MDR cell line, H460-MX20 and S1M1-80, by reducing the resistance fold from 28 to 1 and from 93 to 1.33, respectively. Cariprazine, in a concentration-dependent (1⁻20 µM), significantly increased the intracellular accumulation of Rhodamine 123 in S1M1-80. Interestingly, 10 or 20 µM of cariprazine significantly decreased the expression levels of the ABCG2 protein in the colon and lung cancer cell lines, suggesting that cariprazine inhibits both the function and expression of ABCG2 transporters at nontoxic concentrations. Overall, our results suggest that cariprazine, via several distinct mechanisms, can resensitize resistant cancer cells to mitoxantrone.

20.
Front Pharmacol ; 9: 520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875662

RESUMO

The inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT), are involved in the progression, metastasis, and resistance of colorectal cancer (CRC) to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a-15k) and compound 17, were screened for cytotoxicity in CRC cell lines. Compounds HM015j and HM015k (15k and 15j) significantly decreased cell proliferation, inhibited colony formation, and produced cell cycle arrest in CRC cells. Furthermore, 15k significantly induced the formation of reactive oxygen species and apoptosis. It induced the cleavage of the intrinsic apoptotic protein (Bax p21) to its more efficacious fragment, p18. Compound 15k also inhibited tubulin expression and disrupted its structure. Compound 15k significantly decreased metastatic LOVO cell migration and invasion. Furthermore, 15k reversed mesenchymal morphology in HCT116 and LOVO cells. Additionally, 15k significantly inhibited the expression of the mesenchymal marker N-cadherin and upregulated the expression of the epithelial marker, E-cadherin. Compound 15k inhibited the expression of key proteins known to induce EMT (i.e., DVL3, ß-catenin, c-Myc) and upregulated the anti-metastatic protein, cyclin B1. Overall, in vitro, 15k significantly inhibited CRC progression and metastasis by inhibiting apoptosis, tubulin activity and the EMT pathways. Overall, these data suggest that compound 15k should be tested in vivo in a CRC animal model for further development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA