Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
RSC Adv ; 13(37): 26111-26120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664213

RESUMO

Inflammation is a multifaceted "second-line" adaptive defense mechanism triggered by exo/endogenous threating stimuli and inter-communicated by various inflammatory key players. Unresolved or dysregulated inflammation in lungs results in manifestation of diseases and leads to irreparable damage. Aquaporins (AQPs) are a ubiquitously expressed superfamily of intrinsic transmembrane water channel proteins that modulate the fluid homeostasis. In addition to their conventional functions, AQPs have clinical relevance to inflammation prevailing under the infectious conditions of various lung diseases and this proclaims them as appropriate biomarkers to be targeted. Hence an endeavor was undertaken to identify potential ligands to target AQP4 for the treatment of lung diseases. Oxazole being a versatile bio-potent core, a series of 2,4,5-trisubstituted oxazoles 3a-j were synthesized by a Lewis acid mediated reaction of aroylmethylidene malonates with nitriles. In silico studies conducted using the protein data bank (PDB) structure 3gd8 for AQP4 revealed that compound 3a would serve as a suitable candidate to inhibit AQP4 in human lung cells (NCI-H460). Further, in vitro studies demonstrated that compound 3a could effectively inhibit AQP4 and inflammatory cytokines in lung cells and hence it may be considered as a viable drug candidate for the treatment of various lung diseases.

2.
ACS Omega ; 7(1): 669-682, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036733

RESUMO

A cobalt(III) complex, [Co(L)]Cl (complex 1, where L = 1,8-[N,N-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}]-1,4,8,11-tetraaza-5,5,7,12,12,14-hexamethylcyclotetradecane) with distorted octahedral geometry has been synthesized and characterized using various spectroscopic techniques. The structure of the ligand has remarkably rich hydrogen intermolecular interactions such as H···H, H···C/C···H, and H···O/O···H that vary with the presence of the metal ion, and the structure of complex 1 has Cl···H interactions; this result has been proved by Hirshfeld surface and two-dimensional (2D) fingerprint maps analyses. The complex exhibits a quasi-reversible Co(III)/Co(II) redox couple with E 1/2 = -0.76 V. Calf thymus DNA (CT DNA) binding abilities of the ligand and complex 1 were confirmed by spectroscopic and electrochemical analyses. According to absorption studies, the ligand and complex 1 bind to CT DNA via intercalative binding mode, with intrinsic binding strengths of 1.41 × 103 and 8.64 × 103 M-1, respectively. A gel electrophoresis assay shows that complex 1 promotes the pUC19 DNA cleavage under dark and light irradiation conditions. Complex 1 has superior antimicrobial activity than the ligand. The cytotoxicity of complex 1 was tested against MDA-MB-231 breast cancer cells with values of IC50 of 1.369 µg mL-1 in the dark and 0.9034 µg mL-1 after light irradiation. Besides, cell morphological studies confirmed the morphological changes with AO/EB dual staining, reactive oxygen species (ROS) staining, mitochondria staining, and Hoechst staining on MDA-MB-231 cancer cells by fluorescence microscopy. Complex 1 was found to be a potent antiproliferative agent against MDA-MB-231 cells, and it can induce mitochondrial-mediated and caspase-dependent apoptosis with activation of downregulated caspases. The biotoxicity assay of complex 1 on the development of Artemia nauplii was evaluated at an IC50 value of 200 µg mL-1 and with excellent biocompatibility.

3.
Mar Drugs ; 19(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564142

RESUMO

Developing peptide-based drugs are very promising to address many of the lifestyle mediated diseases which are prevalent in a major portion of the global population. As an alternative to synthetic peptide-based drugs, derived peptides from natural sources have gained a greater attention in the last two decades. Aquatic organisms including plants, fish and shellfish are known as a rich reservoir of parent protein molecules which can offer novel sequences of amino acids in peptides, having unique bio-functional properties upon hydrolyzing with proteases from different sources. However, rather than exploiting fish and shellfish stocks which are already under pressure due to overexploitation, the processing discards, regarded as secondary raw material, could be a potential choice for peptide based therapeutic development strategies. In this connection, we have attempted to review the scientific reports in this area of research that deal with some of the well-established bioactive properties, such as antihypertensive, anti-oxidative, anti-coagulative, antibacterial and anticarcinogenic properties, with reference to the type of enzymes, substrate used, degree of particular bio-functionality, mechanism, and wherever possible, the active amino acid sequences in peptides. Many of the studies have been conducted on hydrolysate (crude mixture of peptides) enriched with low molecular bioactive peptides. In vitro and in vivo experiments on the potency of bioactive peptides to modulate the human physiological functions beneficially have demonstrated that these peptides can be used in the prevention and treatment of non-communicable lifestyle mediated diseases. The information synthesized under this review could serve as a point of reference to drive further research on and development of functionally active therapeutic natural peptides. Availability of such scientific information is expected to open up new zones of investigation for adding value to underutilized secondary raw materials, which in turn paves the way for sustainability in fish processing. However, there are significant challenges ahead in exploring the fish waste as a source of bioactive peptides, as it demands more studies on mechanisms and structure-function relationship understanding as well as clearance from regulatory and statutory bodies before reaching the end user in the form of supplement or therapeutics.


Assuntos
Proteínas de Peixes , Peixes , Indústria de Processamento de Alimentos , Peptídeos , Resíduos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/farmacologia , Gelatina/farmacologia , Humanos , Hidrólise , Peptídeos/química , Peptídeos/farmacologia
4.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299422

RESUMO

The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein-protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.


Assuntos
Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Holarrhena/metabolismo , Receptores de Enterotoxina/metabolismo , Alcaloides/metabolismo , Antidiarreicos/farmacologia , Sítios de Ligação , Simulação por Computador , Diarreia/tratamento farmacológico , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/fisiologia , Proteínas de Escherichia coli/fisiologia , Guanilato Ciclase/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Casca de Planta/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
Front Pharmacol ; 10: 839, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447668

RESUMO

Understanding patients' genomic variations and their effect in protecting or predisposing them to drug response phenotypes is important for providing personalized healthcare. Several studies have manually curated such genotype-phenotype relationships into organized databases from clinical trial data or published literature. However, there are no text mining tools available to extract high-accuracy information from such existing knowledge. In this work, we used a semiautomated text mining approach to retrieve a complete pharmacogenomic (PGx) resource integrating disease-drug-gene-polymorphism relationships to derive a global perspective for ease in therapeutic approaches. We used an R package, pubmed.mineR, to automatically retrieve PGx-related literature. We identified 1,753 disease types, and 666 drugs, associated with 4,132 genes and 33,942 polymorphisms collated from 180,088 publications. With further manual curation, we obtained a total of 2,304 PGx relationships. We evaluated our approach by performance (precision = 0.806) with benchmark datasets like Pharmacogenomic Knowledgebase (PharmGKB) (0.904), Online Mendelian Inheritance in Man (OMIM) (0.600), and The Comparative Toxicogenomics Database (CTD) (0.729). We validated our study by comparing our results with 362 commercially used the US- Food and drug administration (FDA)-approved drug labeling biomarkers. Of the 2,304 PGx relationships identified, 127 belonged to the FDA list of 362 approved pharmacogenomic markers, indicating that our semiautomated text mining approach may reveal significant PGx information with markers for drug response prediction. In addition, it is a scalable and state-of-art approach in curation for PGx clinical utility.

7.
J Mol Model ; 22(10): 238, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27628673

RESUMO

Cardiotoxins (CTXs) belonging to the three-finger toxin superfamily of snake venoms are one of principal toxic components and the protein toxins exhibit membrane lytic activities when the venoms are injected into victims. In the present study, complex formations between CTX VI (a P-type CTX from Naja atra) and CTX1 (an S-type CTX from Naja naja) on zwitterionic POPC bilayers (a major lipid component of cell membranes) have been studied in near physiological conditions for a total dynamic time scale of 1.35 µs using all-atom molecular dynamics (MD) simulations. Comprehensive analyses of the MD data revealed that residues such as Leu1, Lys2, Tyr11, Lys31, Asp57 and Arg58 of CTX VI, and Ala16, Lys30 and Arg58 of CTX1 were crucial for establishing interactions with the POPC bilayer. Moreover, loop I, along with globular head and loop II of CTX VI, and loop II of CTX1 were found to be the structural regions chiefly governing complex formation of the respective proteins with POPC. Rationalizations for the differential binding modes of CTXs and implications of the findings for designing small molecular inhibitors to the toxins are also discussed. Graphical Abstract Binding modes of a P-type CTX and an S-type CTX towards the POPC bilayer.


Assuntos
Cardiotoxinas/química , Membrana Celular/química , Venenos de Serpentes/química , Animais , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Naja naja/metabolismo , Conformação Proteica
8.
Artigo em Inglês | MEDLINE | ID: mdl-26357271

RESUMO

Recent advancements in genomics and proteomics provide a solid foundation for understanding the pathogenesis of diabetes. Proteomics of diabetes associated pathways help to identify the most potent target for the management of diabetes. The relevant datasets are scattered in various prominent sources which takes much time to select the therapeutic target for the clinical management of diabetes. However, additional information about target proteins is needed for validation. This lacuna may be resolved by linking diabetes associated genes, pathways and proteins and it will provide a strong base for the treatment and planning management strategies of diabetes. Thus, a web source "Diabetes Associated Proteins Database (DAPD)" has been developed to link the diabetes associated genes, pathways and proteins using PHP, MySQL. The current version of DAPD has been built with proteins associated with different types of diabetes. In addition, DAPD has been linked to external sources to gain the access to more participatory proteins and their pathway network. DAPD will reduce the time and it is expected to pave the way for the discovery of novel anti-diabetic leads using computational drug designing for diabetes management. DAPD is open accessed via following url www.mkarthikeyan.bioinfoau.org/dapd.


Assuntos
Bases de Dados de Proteínas , Diabetes Mellitus , Bases de Conhecimento , Proteínas , Proteômica/métodos , Humanos , Proteínas/química , Proteínas/classificação , Proteínas/metabolismo , Proteínas/fisiologia
9.
Int J Comput Biol Drug Des ; 8(1): 1-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25869316

RESUMO

The main goal of this study is to understand the molecular-level interactions of neuraminidase inhibitor. The molecular docking, molecular dynamics and binding energy calculation analyses were carried out and the results revealed that the 150-cavitiy in the active site may play an important role in binding of drugs. Free energy calculations revealed that electrostatic interaction is more favourable for Oseltamivir interaction with H1N1 and van der Waals interaction is more favourable for H5N1, whereas Zanamivir favours the electrostatic interaction in both the strains (H1N1 and H5N1). Energy-optimised pharmacophore mapping was created using Oseltamivir drug. The pharmacophore model contained two hydrogen-bond acceptor and two hydrogen bond donor sites. Using these pharmacophore features, we screened a compound database to find a potential ligand that could inhibit the H1N1 protein. The current research will pave the way to find potent neuraminidase inhibitors against H1N1 (2009) strain.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/química , Virus da Influenza A Subtipo H5N1/química , Neuraminidase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Sequência de Aminoácidos , Antivirais/metabolismo , Descoberta de Drogas , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Neuraminidase/química , Neuraminidase/metabolismo , Ligação Proteica , Eletricidade Estática , Proteínas Virais/química , Proteínas Virais/metabolismo
10.
J Recept Signal Transduct Res ; 34(6): 513-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24878201

RESUMO

The renin-angiotensin-aldosterone system (RAAS) plays a key role in the regulation of blood pressure (BP). Mutations on the genes that encode components of the RAAS have played a significant role in genetic susceptibility to hypertension and have been intensively scrutinized. The identification of such probably causal mutations not only provides insight into the RAAS but may also serve as antihypertensive therapeutic targets and diagnostic markers. The methods for analyzing the SNPs from the huge dataset of SNPs, containing both functional and neutral SNPs is challenging by the experimental approach on every SNPs to determine their biological significance. To explore the functional significance of genetic mutation (SNPs), we adopted combined sequence and sequence-structure-based SNP analysis algorithm. Out of 3864 SNPs reported in dbSNP, we found 108 missense SNPs in the coding region and remaining in the non-coding region. In this study, we are reporting only those SNPs in coding region to be deleterious when three or more tools are predicted to be deleterious and which have high RMSD from the native structure. Based on these analyses, we have identified two SNPs of REN gene, eight SNPs of AGT gene, three SNPs of ACE gene, two SNPs of AT1R gene, three SNPs of CYP11B2 gene and three SNPs of CMA1 gene in the coding region were found to be deleterious. Further this type of study will be helpful in reducing the cost and time for identification of potential SNP and also helpful in selecting potential SNP for experimental study out of SNP pool.


Assuntos
Algoritmos , Análise Mutacional de DNA/métodos , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Sistema Renina-Angiotensina/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Humanos , Dados de Sequência Molecular
11.
Biomed Res Int ; 2014: 538053, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860821

RESUMO

Renin-angiotensin system (RAS) polymorphisms have been studied as candidate risk factors for hypertension with inconsistent results, possibly due to heterogeneity among various genetic and environmental factors. A case-control association study was conducted to investigate a possible involvement of polymorphisms of three RAS genes: AGT M235T (rs699), ACE I/D (rs4340) and G2350A (rs4343), and AGTR1 A1166C (rs5186) in essential hypertensive patients. A total of 211 cases and 211 controls were recruited for this study. Genotyping was performed using PCR-RFLP method. The genotype and allele distribution of the M235T variant differed significantly in hypertensives and normotensives (OR-CI = 2.62 (1.24-5.76), P = 0.006; OR-CI = 0.699 (0.518-0.943), P = 0.018), respectively. When the samples were segregated based on sex, the 235TT genotype and T allele were predominant in the female patients (OR-CI = 5.68 (1.60-25.10), P = 0.002; OR-CI = 0.522 (0.330-0.826), P = 0.005) as compare to the male patients (OR-CI = 1.54 (1.24-5.76), P = 0.34; OR-CI = 0.874 (0.330-0.826), P = 0.506), respectively. For ACE DD variant, we found overrepresentation of "I"-allele (homozygous II and heterozygous ID) in unaffected males which suggest its protective role in studied population (OR-CI = 0.401 (0.224-0.718); P = 0.0009). The M235T variant of the AGT is significantly associated with female hypertensives and ACE DD variant could be a risk allele for essential hypertension in south India.


Assuntos
Hipertensão/epidemiologia , Hipertensão/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas ras/genética , Adulto , Idoso , Estudos de Casos e Controles , Hipertensão Essencial , Feminino , Frequência do Gene/genética , Estudos de Associação Genética , Marcadores Genéticos/genética , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Distribuição por Sexo
12.
Mol Biosyst ; 10(8): 2146-59, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24874539

RESUMO

A potent Jak2 inhibitor could solve numerous diseases including hypertension and cardiovascular diseases, myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, psoriasis and rheumatoid arthritis. So, identifying potent Jak2 inhibitors is of great interest to researchers and pharmaceutical companies. Virtual screening and molecular docking are important tools for structure based drug discovery but selecting an appropriate method to calculate the electrostatic potential is critical. In this study, four semi empirical (AM1, RM1, PM3, and MNDO) and two empirical (DFT, HF) charges were investigated for their performance on the prediction of docking pose using Glide XP. The result shows that AM1 has the best charge model for our study. Further, we performed a 3D-quantitative structure-activity relationship (3D-QSAR) study of 76 decaene derivatives. Since 3D-QSAR methods are known to be highly sensitive to ligand conformation and alignment method, we did a comparative 3D-QSAR study of AM1 charge docked pose alignment based QSAR (structure based) and pharmacophore based QSAR. We found a better QSAR model in the structure based method. Hence, the results clearly demonstrate that selecting an appropriate method to calculate the electrostatic potential for docking studies and a good alignment of the ligand for 3D-QSAR is critical. Finally, extensive pharmacophore and e-pharmacophore based virtual screening followed by subsequent docking studies identified 27 lead molecules which could be potent Jak2 inhibitors.


Assuntos
Biologia Computacional/métodos , Desenho de Fármacos , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Aminoácidos , Indústria Farmacêutica , Humanos , Janus Quinase 2/química , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
13.
J Biomol Struct Dyn ; 32(5): 816-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23782165

RESUMO

The existing H1N1 (2009) swine flu is pandemic in nature and is responsible for global economic losses and fatalities. Among the eight gene segments of H1N1, hemagglutinin (HA) plays a major role in the attachment of the virus to the host cell surface and entry of viral RNA into the host cell leads to infection. In this study, sequence and phylogenetic analysis of the H1N1 (2009) HA, from Mexico City along with 1952 sequences, from different subtypes of pandemic influenza A virus were studied and results showed that the closest relationship of H1N1 (2009) Mexico strain was with the H1N1 (2007) Mallard Norway strain. Analysis of secondary structures predicted from the protein sequence revealed that diminishing of alpha helixes was observed in many areas of the sequences between the years 2005 to 2010. Conversely, analysis at the structural level is necessary to critically assess the functional significance. Structural level investigation was therefore done for the above said proteins by constructing the 3D structure of these proteins through homology modeling. The models were validated and structural level similarities were evaluated through superimposition. Subsequently, docking studies were done to find the binding mode of the sialic acid (SA) with influenza HA. Molecular dynamics simulations were executed to study the interactions of SA molecule with the HA. Energetic analysis reveals that van der Waal interaction is more favorable for binding of HA with SA of the whole influenza virus. Binding pocket analysis shows that intensities of H-bond donor and acceptor are more in H1N1 (2009).


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/química , Filogenia , Filogeografia , Homologia de Sequência de Aminoácidos , Termodinâmica
14.
J Recept Signal Transduct Res ; 33(5): 276-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23914783

RESUMO

In this study, a 5-point pharmacophore model was developed and the model was used to generate a predictive atom-based 3D quantitative structure activity relationship (3D-QSAR) analysis for the studied dataset of 50 compounds. The obtained 3D-QSAR model shows correlation coefficient (R(2)) of 0.87 for training set compounds and excellent predictive power (Q(2)) of 0.81 for cross-validated test set compounds. External validation indicated that our 3D-QSAR model has high predictive power with [Formula: see text] and [Formula: see text] values of 0.99 and 0.65, respectively. The most active and least active compounds were further optimized using density functional theory at B3LYP/3-21*G level. Further, pharmacophoric model was employed for pharmacophore-based screening to identify potential inhibitors against Wnt/ß-catenin pathway. Hence, these molecules could act as selective inhibitors of Wnt/ß-catenin pathway which can be experimentally validated. The backbone of these inhibitors could serve as templates for designing drug-like molecules specifically targeting Wnt/ß-catenin pathway.


Assuntos
Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química , Proteínas Wnt/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Proteínas Wnt/química , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/química
15.
J Mol Model ; 19(1): 407-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22940854

RESUMO

Over expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) has been associated with leukemia, myeloma tumors and various other cancers. The function and regulatory mechanism of TOPK in tumor cells remains unclear. Structural studies that could reveal the regulatory mechanism have been a challenge because of the unavailabity of TOPK's crystal structure. Hence, in this study, the 3D structure of TOPK protein has been constructed by using multiple templates. The quality and reliability of the generated model was checked and the molecular dynamics method was utilized to refine the model. APBS method was employed to know the electrostatic potential surface of the modeled protein and it was found that the optimum pH for protein stability is 3.4 which will further help in mechanistic hypothesis of TOPK protein. Active site of TOPK was identified from available literature and HTVS was employed to identify the lead molecules. The expected binding modes of protein-ligand complexes were reproduced in the MD simulation which indicates that the complex is relatively stable. The pharmacokinetic properties of the lead molecules are also under acceptable range. TOPK act as a substrate for CDK1 and the protein-protein docking and dynamics studies were carried out to analyze the effect of Thr9Ala mutation of TOPK in the two protein complex formation. It shows that the wild type complex is more stable when compared with the mutant type. Such structural information at atomic level not only exhibits the action modes of TOPK inhibitors but also furnishes a novel starting point for structure based drug design of TOPK inhibitors.


Assuntos
Simulação por Computador , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Domínio Catalítico , Humanos , Ligantes , Dados de Sequência Molecular , Proteínas Mutantes/química , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Alinhamento de Sequência , Eletricidade Estática , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Termodinâmica , Fatores de Tempo
16.
J Mol Graph Model ; 30: 186-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21831680

RESUMO

Janus kinase 2 (JAK2) plays a crucial role in the patho-mechanism of cardiovascular pathologies, myeloproliferative disorders and many other diseases. Thus, effective JAK2 kinase inhibitors may be of significant therapeutic importance. In this study, a pharmacophore mapping studies were undertaken for a series of phenylaminopyrimidines derivatives. A five point pharmacophore with two hydrogen bond donors (D), two hydrogen bond acceptors (A) and one aromatic ring (R) as pharmacophoric features were developed. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a correlation coefficient of R²=0.970 for training set compounds. The model generated showed excellent predictive power, with a correlation coefficient of Q²=0.822. The external validation indicated that our QSAR models possessed high predictive powers with r²(0) value of 0.999 and r²(m) value of 0.637 respectively. The model was then employed as 3D search query to screen against public compound libraries (Asinex, TOSLab, Maybride and Binding database) in-order to identify a new scaffold. We have identified thirteen distinct drug-like molecules binding to the JAK2. Interestingly, some of the compounds show activity against JAK2 by PASS biological activity prediction. Hence, these molecules could be potential selective inhibitors of JAK2 that can be experimentally validated and their backbone structural scaffold could serve as building blocks in designing drug-like molecules for JAK2.


Assuntos
Simulação por Computador , Desenho de Fármacos , Inibidores Enzimáticos/química , Janus Quinase 2/química , Modelos Moleculares , Pirimidinas/química , Relação Quantitativa Estrutura-Atividade , Algoritmos , Domínio Catalítico , Bases de Dados Factuais , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Janus Quinase 2/antagonistas & inibidores , Ligação Proteica , Termodinâmica
17.
Front Genet ; 2: 72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22303367

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV), the fatal human pathogen is transmitted to humans by tick bite, or exposure to infected blood or tissues of infected livestock. The CCHFV genome consists of three RNA segments namely, S, M, and L. The unusual large viral L protein has an ovarian tumor (OTU) protease domain located in the N terminus. It is likely that the protein may be autoproteolytically cleaved to generate the active virus L polymerase with additional functions. Identification of the epitope regions of the virus is important for the diagnosis, phylogeny studies, and drug discovery. Early diagnosis and treatment of CCHF infection is critical to the survival of patients and the control of the disease. In this study, we undertook different in silico approaches using molecular docking and immunoinformatics tools to predict epitopes which can be helpful for vaccine designing. Small molecule ligands against OTU domain and protein-protein interaction between a viral and a host protein have been studied using docking tools.

18.
Life Sci ; 81(17-18): 1362-72, 2007 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-17931661

RESUMO

The human homologue of murine double minute 2 (HDM2) oncogene is amplified in approximately 7% of all human cancers. Overexpression of HDM2 protein impairs cell cycle control and confers growth advantage to cancer cells. In several cancers the progression of tumor growth and formation of distant metastases are found to be dependent on tumor angiogenesis, a process that is regulated by vascular endothelial growth factor (VEGF). In this study, we have investigated the co-expression of HDM2 and VEGF in various types of human cancer cell lines and have shown that the co-expression is not cell-type-specific. Furthermore, when different types of cell lines were treated with a HDM2 gene specific antisense phosphorothioate oligodeoxynucleotide (HDMAS5), the expression of VEGF mRNA as well as the levels of VEGF protein was found to be decreased. Interestingly, the higher basal levels of VEGF mRNA and the protein observed in HDM2 transfected LNCaP-MST cells were effectively suppressed by HDMAS5 treatment. On the contrary, the mutant oligodeoxynucleotide containing 4 mismatched bases (M4) did not alter the expression of either HDM2 or VEGF in any of the cell lines tested. In conclusion, our findings are the first time evidence showing that HDM2 and VEGF are co-expressed in various cancer cell lines that have aggressive growth and high metastatic abilities. Furthermore, the decrease in VEGF expression observed at the transcriptional as well as translational levels, subsequent to HDMAS5 treatment of p53 null cells, strongly suggests that HDM2 has a regulatory role on VEGF expression in a p53 independent manner.


Assuntos
Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Western Blotting , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Humanos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética
19.
Mol Vis ; 13: 497-503, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-17417611

RESUMO

PURPOSE: Glaucoma can be defined as optic neuropathy leading to irreversible blindness if not treated in time. Primary open angle glaucoma (POAG) is the most common form of glaucoma. The myocilin (MYOC) gene has been found to mutate in both sporadic and familial cases of POAG worldwide. About 90% of these mutations have been seen to cluster at exon III of the gene. There are documented reports of mutations in the MYOC gene among POAG patients from different parts of India. The southernmost tip of the Indian subcontinent (Kanyakumari district) has remained isolated from all these studies. The aim of this study was to indicate or rule out the disease causative role of the MYOC gene mutations in these patients by screening the MYOC gene for mutations among POAG patients of the Kanyakumari district. METHODS: One hundred POAG patients from the Kanyakumari District of South India were recruited for the study. The MYOC gene was screened using the PCR-SSCP methodology followed by DNA sequencing. The sequences were analyzed using BLAST. Secondary structures of the amino acid sequences with a variation were predicted. RESULTS: Two probable disease-causing variations (mutations), Ser331Thr and Pro370Leu, were each observed in one patient apiece. Two polymorphisms, (Tyr347Tyr and Thr325Thr) were also observed in the patients. Ser331Thr is a novel conservative change while Pro370Leu is a widely reported mutation with an associated severe disease phenotype. CONCLUSIONS: The presence of the mutations in the patients suggests the causative role of the MYOC gene among POAG patients in the Kanyakumari district of India. The mutation frequency of 2% corresponds well with the other reports from India and other countries. However, the mutation rate reported from a population in the eastern part of India was much higher. Screening of patients from different parts of India is essential to estimate the overall mutation frequency. More functional studies on the MYOC gene are required to elucidate the pathophysiology of POAG.


Assuntos
Povo Asiático/genética , Proteínas do Citoesqueleto/genética , Proteínas do Olho/genética , Glaucoma de Ângulo Aberto/genética , Glicoproteínas/genética , Mutação , Idoso , Sequência de Bases , Feminino , Humanos , Índia , Leucina , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo Genético , Polimorfismo Conformacional de Fita Simples , Prolina , Serina , Treonina , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...