Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835901

RESUMO

Due to its high theoretical specific capacity, a silicon anode is one of the candidates for realizing high energy density lithium-ion batteries (LIBs). However, problems related to bulk silicon (e.g., low intrinsic conductivity and massive volume expansion) limit the performance of silicon anodes. In this work, to improve the performance of silicon anodes, a vertically aligned n-type silicon nanowire array (n-SiNW) was fabricated using a well-controlled, top-down nano-machining technique by combining photolithography and inductively coupled plasma reactive ion etching (ICP-RIE) at a cryogenic temperature. The array of nanowires ~1 µm in diameter and with the aspect ratio of ~10 was successfully prepared from commercial n-type silicon wafer. The half-cell LIB with free-standing n-SiNW electrode exhibited an initial Coulombic efficiency of 91.1%, which was higher than the battery with a blank n-silicon wafer electrode (i.e., 67.5%). Upon 100 cycles of stability testing at 0.06 mA cm-2, the battery with the n-SiNW electrode retained 85.9% of its 0.50 mAh cm-2 capacity after the pre-lithiation step, whereas its counterpart, the blank n-silicon wafer electrode, only maintained 61.4% of 0.21 mAh cm-2 capacity. Furthermore, 76.7% capacity retention can be obtained at a current density of 0.2 mA cm-2, showing the potential of n-SiNW anodes for high current density applications. This work presents an alternative method for facile, high precision, and high throughput patterning on a wafer-scale to obtain a high aspect ratio n-SiNW, and its application in LIBs.

2.
Sci Rep ; 11(1): 19779, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611222

RESUMO

Production of high-aspect-ratio silicon (Si) nanowire-based anode for lithium ion batteries is challenging particularly in terms of controlling wire property and geometry to improve the battery performance. This report demonstrates tunable optimization of inductively coupled plasma reactive ion etching (ICP-RIE) at cryogenic temperature to fabricate vertically-aligned silicon nanowire array anodes with high verticality, controllable morphology, and good homogeneity. Three different materials [i.e., photoresist, chromium (Cr), and silicon dioxide (SiO2)] were employed as masks during the subsequent photolithography and cryogenic ICP-RIE processes to investigate their effects on the resulting nanowire structures. Silicon nanowire arrays with a high aspect ratio of up to 22 can be achieved by tuning several etching parameters [i.e., temperature, oxygen/sulfur hexafluoride (O2/SF6) gas mixture ratio, chamber pressure, plasma density, and ion energy]. Higher compressive stress was revealed for longer Si wires by means of Raman spectroscopy. Moreover, an anisotropy of lattice stress was found at the top and sidewall of Si nanowire, indicating compressive and tensile stresses, respectively. From electrochemical characterization, half-cell battery integrating ICP-RIE-based silicon nanowire anode exhibits a capacity of 0.25 mAh cm-2 with 16.67% capacity fading until 20 cycles, which has to be improved for application in future energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...