Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 18(2): 439-444, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900443

RESUMO

We recently demonstrated a repurposing beneficial effect of 4-aminopyridine (4-AP), a potassium channel blocker, on functional recovery and muscle atrophy after sciatic nerve crush injury in rodents. However, this effect of 4-AP is unknown in nerve transection, gap, and grafting models. To evaluate and compare the functional recovery, nerve morphology, and muscle atrophy, we used a novel stepwise nerve transection with gluing (STG), as well as 7-mm irreparable nerve gap (G-7/0) and 7-mm isografting in 5-mm gap (G-5/7) models in the absence and presence of 4-AP treatment. Following surgery, sciatic functional index was determined weekly to evaluate the direct in vivo global motor functional recovery. After 12 weeks, nerves were processed for whole-mount immunofluorescence imaging, and tibialis anterior muscles were harvested for wet weight and quantitative histomorphological analyses for muscle fiber cross-sectional area and minimal Feret's diameter. Average post-injury sciatic functional index values in STG and G-5/7 models were significantly greater than those in the G-7/0 model. 4-AP did not affect the sciatic functional index recovery in any model. Compared to STG, nerve imaging revealed more misdirected axons and distorted nerve architecture with isografting. While muscle weight, cross-sectional area, and minimal Feret's diameter were significantly smaller in G-7/0 model compared with STG and G-5/7, 4-AP treatment significantly increased right TA muscle mass, cross-sectional area, and minimal Feret's diameter in G-7/0 model. These findings demonstrate that functional recovery and muscle atrophy after peripheral nerve injury are directly related to the intervening nerve gap, and 4-AP exerts differential effects on functional recovery and muscle atrophy.

2.
ACS Appl Bio Mater ; 4(5): 4140-4151, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34142019

RESUMO

Traumatic peripheral nerve injury (TPNI) represents a major medical problem that results in loss of motor and sensory function, and in severe cases, limb paralysis and amputation. To date, there are no effective treatments beyond surgery in selective cases. In repurposing studies, we found that daily systemic administration of the FDA-approved drug 4-aminopyridine (4-AP) enhanced functional recovery after acute peripheral nerve injury. This study was aimed at constructing a novel local delivery system of 4-AP using thermogelling polymers. We optimized a thermosensitive (4-AP)-poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) block copolymer formulation. (4-AP)-PLGA-PEG exhibited controlled release of 4-AP both in vitro and in vivo for approximately 3 weeks, with clinically relevant safe serum levels in animals. Rheological investigation showed that (4-AP)-PLGA-PEG underwent a solution to gel transition at 32 °C, a physiologically relevant temperature, allowing us to administer it to an injured limb while subsequently forming an in situ gel. A single local administration of (4-AP)-PLGA-PEG remarkably enhanced motor and sensory functional recovery on post-sciatic nerve crush injury days 1, 3, 7, 14, and 21. Moreover, immunohistochemical studies of injured nerves treated with (4-AP)-PLGA-PEG demonstrated an increased expression of neurofilament heavy chain (NF-H) and myelin protein zero (MPZ) proteins, two major markers of nerve regeneration. These findings demonstrate that (4-AP)-PLGA-PEG may be a promising long-acting local therapeutic agent in TPNI, for which no pharmacologic treatment exists.


Assuntos
4-Aminopiridina/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Poliésteres/uso terapêutico , Polietilenoglicóis/uso terapêutico , Temperatura , 4-Aminopiridina/administração & dosagem , Doença Aguda , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/síntese química , Modelos Animais de Doenças , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Tamanho da Partícula , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem
3.
Mil Med ; 186(Suppl 1): 696-703, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33499508

RESUMO

BACKGROUND: Functional recovery following primary nerve repair of a transected nerve is often poor even with advanced microsurgical techniques. Recently, we developed a novel sciatic nerve transection method where end-to-end apposition of the nerve endings with minimal gap was performed with fibrin glue. We demonstrated that transected nerve repair with gluing results in optimal functional recovery with improved axonal neurofilament distribution profile compared to the end-to-end micro-suture repair. However, the impact of axonal misdirection and misalignment of nerve fascicles remains largely unknown in nerve-injury recovery. We addressed this issue using a novel nerve repair model with gluing. METHODS: In our complete "Flip and Transection with Glue" model, the nerve was "first" transected to 40% of its width from each side and distal stump was transversely flipped, then 20 µL of fibrin glue was applied around the transection site and the central 20% nerve was completely transected before fibrin glue clotting. Mice were followed for 28 days with weekly assessment of sciatic function. Immunohistochemistry analysis of both sciatic nerves was performed for neurofilament distribution and angiogenesis. Tibialis anterior muscles were analyzed for atrophy and histomorphometry. RESULTS: Functional recovery following misaligned repair remained persistently low throughout the postsurgical period. Immunohistochemistry of nerve sections revealed significantly increased aberrant axonal neurofilaments in injured and distal nerve segments compared to proximal segments. Increased aberrant neurofilament profiles in the injured and distal nerve segments were associated with significantly increased nerve blood-vessel density and branching index than in the proximal segment. Injured limbs had significant muscle atrophy, and muscle fiber distribution showed significantly increased numbers of smaller muscle fibers and decreased numbers of larger muscle fibers. CONCLUSIONS: These findings in a novel nerve transection mouse model with misaligned repair suggest that aberrant neurofilament distributions and axonal misdirections play an important role in functional recovery and muscle atrophy.


Assuntos
Filamentos Intermediários , Animais , Adesivo Tecidual de Fibrina/farmacologia , Adesivo Tecidual de Fibrina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica , Nervo Isquiático/cirurgia
4.
Muscle Nerve ; 63(2): 268-272, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33205838

RESUMO

BACKGROUND: Erythropoietin (EPO) promotes myelination and functional recovery in rodent peripheral nerve injury (PNI). While EPO receptors (EpoR) are present in Schwann cells, the role of EpoR in PNI recovery is unknown because of the lack of EpoR antagonists or Schwann cell-specific EpoR knockout animals. METHODS: Using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EpoR (MpzCre-EpoRflox/flox , Mpz-EpoR-KO). Mpz-EpoR-KO and control mice were assigned to sciatic nerve crush injury followed by EPO treatment. RESULTS: EPO treatment significantly accelerated functional recovery in control mice in contrast to significantly reduced functional recovery in Mpz-EpoR-KO mice. Significant muscle atrophy was found in the injured hindlimb of EPO-treated Mpz-EpoR-KO mice but not in EPO-treated control mice. CONCLUSIONS: These preliminary findings provide direct evidence for an obligatory role of Schwann-cell specific EpoR for EPO-induced functional recovery and muscle atrophy following PNI.


Assuntos
Eritropoetina/metabolismo , Atrofia Muscular/genética , Traumatismos dos Nervos Periféricos/genética , Receptores da Eritropoetina/genética , Recuperação de Função Fisiológica/genética , Células de Schwann/metabolismo , Nervo Isquiático/lesões , Animais , Lesões por Esmagamento/complicações , Lesões por Esmagamento/genética , Lesões por Esmagamento/metabolismo , Camundongos , Camundongos Knockout , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Receptores da Eritropoetina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...