Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(20): 8401-8411, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28351836

RESUMO

Excitation-contraction (EC) coupling in skeletal muscle requires a physical interaction between the voltage-gated calcium channel dihydropyridine receptor (DHPR) and the ryanodine receptor Ca2+ release channel. Although the exact molecular mechanism that initiates skeletal EC coupling is unresolved, it is clear that both the α1 and ß subunits of DHPR are essential for this process. Here, we employed a series of techniques, including size-exclusion chromatography-multi-angle light scattering, differential scanning fluorimetry, and isothermal calorimetry, to characterize various biophysical properties of the skeletal DHPR ß subunit ß1a Removal of the intrinsically disordered N and C termini and the hook region of ß1a prevented oligomerization, allowing for its structural determination by X-ray crystallography. The structure had a topology similar to that of previously determined ß isoforms, which consist of SH3 and guanylate kinase domains. However, transition melting temperatures derived from the differential scanning fluorimetry experiments indicated a significant difference in stability of ∼2-3 °C between the ß1a and ß2a constructs, and the addition of the DHPR α1s I-II loop (α-interaction domain) peptide stabilized both ß isoforms by ∼6-8 °C. Similar to other ß isoforms, ß1a bound with nanomolar affinity to the α-interaction domain, but binding affinities were influenced by amino acid substitutions in the adjacent SH3 domain. These results suggest that intramolecular interactions between the SH3 and guanylate kinase domains play a role in the stability of ß1a while also providing a conduit for allosteric signaling events.


Assuntos
Canais de Cálcio Tipo L/química , Guanilato Quinases/química , Regulação Alostérica , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Cristalografia por Raios X , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Camundongos , Estrutura Secundária de Proteína , Transdução de Sinais , Domínios de Homologia de src
2.
Int J Biochem Cell Biol ; 48: 28-38, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24374102

RESUMO

There is an overwhelming body of work supporting the idea that excitation-contraction coupling in skeletal muscle depends on a physical interaction between the skeletal muscle isoform of the dihydropyridine receptor L-type Ca(2+) channel and the skeletal isoform of the ryanodine receptor Ca(2+) release channel. A general assumption is that this physical interaction is between "critical" residues that have been identified in the II-III loop of the dihydropyridine receptor alpha subunit and the ryanodine receptor. However, despite extensive searches, the complementary "critical" residues in the ryanodine receptor have not been identified. This raises the possibility that the coupling proceeds either through other subunits of the dihydropyridine receptor and/or other co-proteins within the large RyR1 protein complex. There have been some remarkable advances in recent years in identifying proteins in the RyR complex that impact on the coupling process, and these are considered in this review. A major candidate for a role in the coupling mechanism is the beta subunit of the dihydropyridine receptor, because specific residues in both the beta subunit and ryanodine receptor have been identified that facilitate an interaction between the two proteins and these also impact on excitation-contraction coupling. This role of beta subunit remains to be fully investigated as well as the degree to which it may complement any other direct or indirect voltage-dependent coupling interactions between the DHPR alpha II-III loop and the ryanodine receptor.


Assuntos
Músculo Esquelético/fisiologia , Animais , Acoplamento Excitação-Contração , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
FASEB J ; 26(12): 5049-59, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22962299

RESUMO

Excitation-contraction (EC) coupling in skeletal muscle depends on protein interactions between the transverse tubule dihydropyridine receptor (DHPR) voltage sensor and intracellular ryanodine receptor (RyR1) calcium release channel. We present novel data showing that the C-terminal 35 residues of the ß(1a) subunit adopt a nascent α-helix in which 3 hydrophobic residues align to form a hydrophobic surface that binds to RyR1 isolated from rabbit skeletal muscle. Mutation of the hydrophobic residues (L496, L500, W503) in peptide ß(1a)V490-M524, corresponding to the C-terminal 35 residues of ß(1a), reduced peptide binding to RyR1 to 15.2 ± 7.1% and prevented the 2.9 ± 0.2-fold activation of RyR1 by 10 nM wild-type peptide. An upstream hydrophobic heptad repeat implicated in ß(1a) binding to RyR1 does not contribute to RyR1 activation. Wild-type ß(1a)A474-A508 peptide (10 nM), containing heptad repeat and hydrophobic surface residues, increased RyR1 activity by 2.3 ± 0.2- and 2.2 ± 0.3-fold after mutation of the heptad repeat residues. We conclude that specific hydrophobic surface residues in the 35 residue ß(1a) C-terminus bind to RyR1 and increase channel activity in lipid bilayers and thus may support skeletal EC coupling.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Sítios de Ligação/genética , Canais de Cálcio Tipo L/genética , Acoplamento Excitação-Contração , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Homologia de Sequência de Aminoácidos , Propriedades de Superfície
4.
Biochem Pharmacol ; 83(11): 1523-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22406107

RESUMO

The muscle-specific glutathione transferase GSTM2-2 modulates the activity of ryanodine receptor (RyR) calcium release channels: it inhibits the activity of cardiac RyR (RyR2) channels with high affinity and activates skeletal RyR (RyR1) channels with low affinity. The C terminal domain of GSTM2-2 (GSTM2C) alone physically binds to RyR2 and inhibits its activity, but it does not bind to RyR1. We have now used yeast two-hybrid analysis, chemical cross-linking, intrinsic tryptophan fluorescence and Ca(2+) release studies to determine that the binding site for GSTM2C is in divergent region 3 (D3) of RyR2. The D3 region encompasses residues 1855-1890 in RyR2. Specific mutagenesis shows the binding primarily involves electrostatic interactions with residues K1875, K1886, R1887 and K1889, all residues that are present in RyR2, but not in RyR1. The significant sequence differences between the D3 regions of RyR2 and RyR1 explain why GSTM2-2 specifically inhibits RyR2. This specific inhibition of RyR2 could modulate Ca cycling and be useful for the treatment of heart failure. RyR2 inhibition during diastole may improve filling of the SR with Ca(2+) and improve contractility.


Assuntos
Glutationa Transferase/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sinalização do Cálcio , Clonagem Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Triptofano/química , Triptofano/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
J Biol Chem ; 286(25): 22589-99, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21525002

RESUMO

A key component of excitation contraction (EC) coupling in skeletal muscle is the cytoplasmic linker (II-III loop) between the second and third transmembrane repeats of the α(1S) subunit of the dihydropyridine receptor (DHPR). The II-III loop has been previously examined in vitro using a linear II-III loop with unrestrained N- and C-terminal ends. To better reproduce the loop structure in its native environment (tethered to the DHPR transmembrane domains), we have joined the N and C termini using intein-mediated technology. Circular dichroism and NMR spectroscopy revealed a structural shift in the cyclized loop toward a protein with increased α-helical and ß-strand structure in a region of the loop implicated in its in vitro function and also in a critical region for EC coupling. The affinity of binding of the II-III loop binding to the SPRY2 domain of the skeletal ryanodine receptor (RyR1) increased 4-fold, and its ability to activate RyR1 channels in lipid bilayers was enhanced 3-fold by cyclization. These functional changes were predicted consequences of the structural enhancement. We suggest that tethering the N and C termini stabilized secondary structural elements in the DHPR II-III loop and may reflect structural and dynamic characteristics of the loop that are inherent in EC coupling.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Canais de Cálcio Tipo L/genética , Ciclização , DnaB Helicases/química , DnaB Helicases/metabolismo , Inteínas/genética , Ativação do Canal Iônico , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Processamento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Especificidade por Substrato , Synechocystis/enzimologia
6.
Biophys J ; 100(4): 922-30, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21320436

RESUMO

Although it has been suggested that the C-terminal tail of the ß(1a) subunit of the skeletal dihyropyridine receptor (DHPR) may contribute to voltage-activated Ca(2+) release in skeletal muscle by interacting with the skeletal ryanodine receptor (RyR1), a direct functional interaction between the two proteins has not been demonstrated previously. Such an interaction is reported here. A peptide with the sequence of the C-terminal 35 residues of ß(1a) bound to RyR1 in affinity chromatography. The full-length ß(1a) subunit and the C-terminal peptide increased [(3)H]ryanodine binding and RyR1 channel activity with an AC(50) of 450-600 pM under optimal conditions. The effect of the peptide was dependent on cytoplasmic Ca(2+), ATP, and Mg(2+) concentrations. There was no effect of the peptide when channel activity was very low as a result of Mg(2+) inhibition or addition of 100 nM Ca(2+) (without ATP). Maximum increases were seen with 1-10 µM Ca(2+), in the absence of Mg(2+) inhibition. A control peptide with the C-terminal 35 residues in a scrambled sequence did not bind to RyR1 or alter [(3)H]ryanodine binding or channel activity. This high-affinity in vitro functional interaction between the C-terminal 35 residues of the DHPR ß(1a) subunit and RyR1 may support an in vivo function of ß(1a) during voltage-activated Ca(2+) release.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico , Músculo Esquelético/metabolismo , Subunidades Proteicas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Dados de Sequência Molecular , Músculo Esquelético/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Coelhos , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Relação Estrutura-Atividade
7.
Eur Biophys J ; 39(1): 75-81, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19455319

RESUMO

Voltage-gated Ca(2+) channels (VGCCs) are involved in a number of excitatory processes in the cell that regulate muscle contraction, neurotransmitter release, gene regulation, and neuronal migration. They consist of a central pore-forming alpha(1) subunit together with a number of associated auxiliary subunits including a cytoplasmic beta subunit. With the aid of X-ray crystallography, it has been found that the beta subunits of VGCCs (beta(2a), beta(3), and beta(4)) interact strongly with the I-II loop of the pore-forming alpha(1) subunit. Here we discuss the potential interaction sites of beta(1a) with its alpha(1) subunit as well as the skeletal ryanodine receptor. We suggest that not only can beta(1a) interact with the alpha(1) subunit I-II loop, but more subtle interactions may be possible through the II-III loop via the beta(1a) SH3 domain. Such findings could have important implications with respect to EC coupling.


Assuntos
Canais de Cálcio/metabolismo , Ativação do Canal Iônico , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/química , Membrana Celular/metabolismo , Doença , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Subunidades Proteicas/química
8.
Int J Biochem Cell Biol ; 41(3): 677-86, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18761102

RESUMO

The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Membrana/metabolismo , Músculo Esquelético/fisiologia , Proteínas Mutantes Quiméricas/metabolismo , Fosfoproteínas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sítios de Ligação , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Cristalização , Humanos , Técnicas In Vitro , Imageamento por Ressonância Magnética , Proteínas de Membrana/química , Contração Muscular/fisiologia , Mutagênese Sítio-Dirigida , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Fosfoproteínas/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Secundária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/química
9.
Clin Exp Pharmacol Physiol ; 36(3): 346-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19076161

RESUMO

1. The dihydropyridine receptor (DHPR) II-III loop is an intrinsically unstructured region made up of alpha-helical and beta-turn secondary structure elements with the N and C termini in close spatial proximity. 2. The DHPR II-III loop interacts in vitro with a ryanodine receptor (RyR) 1 SPRY domain through alpha-helical segments located in the A and B regions. Mutations within the A and B regions in the DHPR II-III loop alter the binding affinity to the SPRY2 domain. 3. The A and C peptides derived from DHPR II-III loop show negative cooperativity in binding to the SPRY2 domain. 4. The SPRY2 domain of the RyR1 (1085-1208) forms a beta-sheet sandwich structure flanked by variable loop regions. An acidic loop region of SPRY2 (1107-1121) forms part of a negatively charged cleft that is implicated in the binding of the DHPR II-III loop. 5. The mutant E1108A located in the negatively charged loop of SPRY2 reduces the binding affinity to the DHPR II-III loop.


Assuntos
Canais de Cálcio Tipo L/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Homologia Estrutural de Proteína
10.
Clin Exp Pharmacol Physiol ; 33(11): 1114-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17042924

RESUMO

1. Excitation-contraction coupling in skeletal muscle is dependent on a physical interaction between the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR). 2. A number of peptides derived from the II-III loop region of the DHPR have been shown to be functionally active in stimulating the release of calcium via RyR channels. Their function has been found to correlate with the presence of a basic helical region located at the N-terminus of the II-III loop. 3. The entire recombinant skeletal DHPR II-III loop is an efficient activator of RyR1 and RyR2. 4. The skeletal DHPR II-III loop is comprised of a series of a-helices, but its tertiary structure has been determined to be unstructured and flexible. 5. Fluorescence quenching experiments have been used to identify and measure the binding affinity of the II-III loop with fragments of the RyR.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sítios de Ligação , Canais de Cálcio Tipo L/química , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química
11.
Methods Enzymol ; 398: 540-54, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16275357

RESUMO

Ubiquitin is synthesized in eukaryotes as a linear fusion with a normal peptide bond either to itself or to one of two ribosomal proteins and, in the latter case, enhances the yield of these ribosomal proteins and/or their incorporation into the ribosome. Such fusions are cleaved rapidly by a variety of deubiquitylating enzymes. Expression of heterologous proteins as linear ubiquitin fusions has been found to significantly increase the yield of unstable or poorly expressed proteins in either bacterial or eukaryotic hosts. If expressed in bacterial cells, the fusion is not cleaved due to the absence of deubiquitylating activity and can be purified intact. We have developed an efficient expression system, utilizing the ubiquitin fusion technique and a robust deubiquitylating enzyme, which allows convenient high yield and easy purification of authentic proteins. An affinity purification tag on both the ubiquitin fusion and the deubiquitylating enzyme allows their easy purification and the easy removal of unwanted components after cleavage, leaving the desired protein as the only soluble product. Ubiquitin is also conjugated to epsilon amino groups in lysine side chains of target proteins to form a so-called isopeptide linkage. Either a single ubiquitin can be conjugated or other lysines within ubiquitin can be acceptors for further conjugation, leading to formation of a branched, isopeptide-linked ubiquitin chain. Removal of these ubiquitin moieties or chains in vitro would be a valuable tool in the ubiquitinologists tool kit to simplify downstream studies on ubiquitylated targets. The robust deubiquitylating enzyme described earlier is also very useful for this task.


Assuntos
Endopeptidases/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Escherichia coli/genética , Vetores Genéticos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Cloreto de Sódio , Ubiquitina/genética , Proteases Específicas de Ubiquitina
13.
Front Biosci ; 10: 1368-81, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15769632

RESUMO

The actions of the recombinant skeletal dihydropyridine receptor II-III loop (SDCL), and the C region peptide (CS) on native skeletal muscle ryanodine receptor Ca2+ release channel (RyR1) have been examined. Three non conserved residues in the "C" region of the skeletal DHPR II-III loop were replaced by the equivalent cardiac residues in SDCLAFP-PTT (A739P, F741T and P742T) and single substitutions made in SDCLA-P, SDCLF-T and SDCLP-T. Wild type SDCL as well as SDCLF-T and SDCLP-T activated RyR1 in lipid bilayers with high affinity (10 nM to 1 microM). Wild type SDCL at higher concentrations inhibited RyR1. In contrast, SDCLAFP-PTT and SDCLA-P inhibited the channels at >or=10 nM. The inhibitory actions of these two skeletal loop mutants were distinctly different from the cardiac II-III loop (CDCL) which, like the wild-type SDCL, activated channels. In contrast to the full loop, the triple A739P, F741T and P742T mutation in peptide CS converted the peptides' function from skeletal-like to cardiac-like. The individual A739P mutation, but not F741T or P742T, reduced the functional efficacy of CS. None of the mutations significantly altered the NMR-based secondary structure of the C residues in SDCLAFP-PTT or CS. The CS peptide and its mutants, like the cardiac CC peptide, were all partially alpha helical at low temperatures. The results show that residue A739 is critical for the functional consequences of interactions between RyR1 and either the skeletal II-III loop or CS, but that none of A739, F741 or P742 are critical determinants of the structure of the C region.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Células Cultivadas , Humanos , Músculo Esquelético/citologia , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química
14.
Biochem J ; 385(Pt 3): 803-13, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15511220

RESUMO

A physical association between the II-III loop of the DHPR (dihydropryidine receptor) and the RyR (ryanodine receptor) is essential for excitation-contraction coupling in skeletal, but not cardiac, muscle. However, peptides corresponding to a part of the II-III loop interact with the cardiac RyR2 suggesting the possibility of a physical coupling between the proteins. Whether the full II-III loop and its functionally important 'C' region (cardiac DHPR residues 855-891 or skeletal 724-760) interact with cardiac RyR2 is not known and is examined in the present study. Both the cardiac DHPR II-III loop (CDCL) and cardiac peptide (C(c)) activated RyR2 channels at concentrations >10 nM. The skeletal DHPR II-III loop (SDCL) activated channels at < or =100 nM and weakly inhibited at > or =1 microM. In contrast, skeletal peptide (C(s)) inhibited channels at all concentrations when added alone, or was ineffective if added in the presence of C(c). Ca2+-induced Ca2+ release from cardiac sarcoplasmic reticulum was enhanced by CDCL, SDCL and the C peptides. The results indicate that the interaction between the II-III loop and RyR2 depends critically on the 'A' region (skeletal DHPR residues 671-690 or cardiac 793-812) and also involves the C region. Structure analysis indicated that (i) both C(s) and C(c) are random coil at room temperature, but, at 5 degrees C, have partial helical regions in their N-terminal and central parts, and (ii) secondary-structure profiles for CDCL and SDCL are similar. The data provide novel evidence that the DHPR II-III loop and its C region interact with cardiac RyR2, and that the ability to interact is not isoform-specific.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Miocárdio/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Dicroísmo Circular , Citoplasma/metabolismo , Espectroscopia de Ressonância Magnética , Potenciais da Membrana/efeitos dos fármacos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Retículo Sarcoplasmático/metabolismo , Soluções , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...