Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 12(1): 337, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287014

RESUMO

BACKGROUND: Aedes aegypti were found developing in the water in open public drains (drain-water, DW) in Jaffna city in northern Sri Lanka, a location where the arboviral diseases dengue and chikungunya are endemic. METHODS: Susceptibilities to the common insecticides dichlorodiphenyltrichloroethane (DDT), malathion, propoxur, permethrin and deltamethrin and activities of the insecticide-detoxifying enzymes carboxylesterase (EST), glutathione S-transferase (GST) and monooxygenase (MO) were compared in adult Ae. aegypti developing in DW and fresh water (FW). RESULTS: DW Ae. aegypti were resistant to the pyrethroids deltamethrin and permethrin, while FW Ae. aegypti were susceptible to deltamethrin but possibly resistant to permethrin. Both DW and FW Ae. aegypti were resistant to DDT, malathion and propoxur. Greater pyrethroid resistance in DW Ae. aegypti was consistent with higher GST and MO activities. CONCLUSIONS: The results demonstrate the potential for insecticide resistance developing in Ae. aegypti adapted to DW. Urbanization in arboviral disease-endemic countries is characterized by a proliferation of open water drains and therefore the findings identify a potential new challenge to global health.


Assuntos
Aedes/enzimologia , Arbovírus/fisiologia , Resistência a Inseticidas , Mosquitos Vetores/enzimologia , Águas Residuárias/parasitologia , Aedes/efeitos dos fármacos , Aedes/virologia , Animais , Carboxilesterase/metabolismo , DDT/farmacologia , Feminino , Saúde Global , Glutationa Transferase/metabolismo , Humanos , Inseticidas/farmacologia , Malation/farmacologia , Masculino , Camundongos , Oxigenases de Função Mista/metabolismo , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/virologia , Nitrilas/farmacologia , Permetrina/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia
2.
Front Public Health ; 7: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923705

RESUMO

The malaria vector Anopheles stephensi is found in wide tracts of Asia and the Middle East. The discovery of its presence for the first time in the island of Sri Lanka in 2017, poses a threat of malaria resurgence in a country which had eliminated the disease in 2013. Morphological and genetic characterization showed that the efficient Indian urban vector form An. stephensi sensu stricto or type form, has recently expanded its range to Jaffna and Mannar in northern Sri Lanka that are in proximity to Tamil Nadu state in South India. Comparison of the DNA sequences of the cytochrome oxidase subunit 1 gene in An. stephensi in Jaffna and Mannar in Sri Lanka and Tamil Nadu and Puducherry states in South India showed that a haplotype that is due to a sequence change from valine to methionine in the cytochrome oxidase subunit 1 present in the Jaffna and Mannar populations has not been documented so far in Tamil Nadu/Puducherry populations. The Jaffna An. stephensi were closer to Tamil Nadu/Puducherry populations and differed significantly from the Mannar populations. The genetic findings cannot differentiate between separate arrivals of the Jaffna and Mannar An. stephensi from Tamil Nadu or a single arrival and dispersion to the two locations accompanied by micro-evolutionary changes. Anopheles stephensi was observed to undergo preimaginal development in fresh and brackish water domestic wells and over ground cement water storage tanks in the coastal urban environment of Jaffna and Mannar. Anopheles stephensi in Jaffna was resistant to the common insecticides deltamethrin, dichlorodiphenyltrichloroethane and Malathion. Its preimaginal development in wells and water tanks was susceptible to predation by the larvivorous guppy fish Poecilia reticulata. The arrival, establishment, and spread of An. stephensi in northern Sri Lanka are analyzed in relation to anthropogenic factors that favor its range expansion. The implications of the findings for global public health challenges posed by malaria and other mosquito-borne diseases are discussed.

3.
Parasit Vectors ; 11(1): 3, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298698

RESUMO

BACKGROUND: Anopheles stephensi, the major vector of urban malaria in India, was recently detected for the first time in Sri Lanka in Mannar Island on the northwestern coast. Since there are different biotypes of An. stephensi with different vector capacities in India, a study was undertaken to further characterise the genotype and biotype of An. stephensi in Mannar Island. METHODS: Mosquito larvae were collected in Pesalai village in Mannar and maintained in the insectary until adulthood. Adult An. stephensi were identified morphologically using published keys. Identified adult An. stephensi were molecularly characterized using two mitochondrial (cox1 and cytb) and one nuclear (ITS2) markers. Their PCR-amplified target fragments were sequenced and checked against available sequences in GenBank for phylogenetic analysis. The average spiracular and thoracic lengths and the spiracular index were determined to identify biotypes based on corresponding indices for Indian An. stephensi. RESULTS: All DNA sequences for the Mannar samples matched reported sequences for An. stephensi from the Middle East and India. However, a single nucleotide variation in the cox1 sequence suggested an amino acid change from valine to methionine in the cox1 protein in Sri Lankan An. stephensi. Morphological data was consistent with the presence of the Indian urban vector An. stephensi type-form in Sri Lanka. CONCLUSIONS: The present study provides a more detailed molecular characterization of An. stephensi and suggests the presence of the type-form of the vector for the first time in Sri Lanka. The single mutation in the cox1 gene may be indicative of a founder effect causing the initial diversification of An. stephensi in Sri Lanka from the Indian form. The distribution of the potent urban vector An. stephensi type-form needs to be established by studies throughout the island as its spread adds to the challenge of maintaining the country's malaria-free status.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Genética Populacional , Genótipo , Fenótipo , Estruturas Animais/anatomia & histologia , Animais , Anopheles/anatomia & histologia , Anopheles/genética , Citocromos b/genética , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Entomologia/métodos , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sri Lanka
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...