Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255036

RESUMO

Transdermal drug delivery (TDD) is an attractive route of administration, providing several advantages, especially over oral and parenteral routes. However, TDD is significantly restricted due to the barrier imposed by the uppermost layer of the skin, the stratum corneum (SC). Microneedles is a physical enhancement technique that efficiently pierces the SC and facilitates the delivery of both lipophilic and hydrophilic molecules. Dissolving microneedles is a commonly used type that is fabricated utilizing various biodegradable and biocompatible polymers, such as polylactic acid, polyglycolic acid, or poly(lactide-co-glycolide) (PLGA). Such polymers also promote the prolonged release of the drug due to the slow degradation of the polymer matrix following its insertion. We selected carfilzomib, a small therapeutic peptide (MW: 719.924 g/mol, log P 4.19), as a model drug to fabricate a microneedle-based sustained delivery system. This study is a proof-of-concept investigation in which we fabricated PLGA microneedles using four types of PLGA (50-2A, 50-5A, 75-5A, and 50-7P) to evaluate the feasibility of long-acting transdermal delivery of carfilzomib. Micromolding technique was used to fabricate the PLGA microneedles and characterization tests, including Fourier transform infrared spectroscopy, insertion capability using the skin simulant Parafilm model, histological evaluation, scanning electron microscopy, and confocal microscopy were conducted. In vitro release and permeation testing were conducted in vertical Franz diffusion cells. N-methyl pyrrolidone was utilized as the organic solvent and microneedles were solidified in controlled conditions, which led to good mechanical strength. Both in vitro release and permeation testing showed sustained profiles of carfilzomib over 7 days. The release and permeation were significantly influenced by the molecular weight of PLGA and the lipophilic properties of carfilzomib.

2.
Adv Drug Deliv Rev ; 210: 115326, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38692457

RESUMO

Transdermal administration remains an active research and development area as an alternative route for long-acting drug delivery. It avoids major drawbacks of conventional oral (gastrointestinal side effects, low drug bioavailability, and need for multiple dosing) or parenteral routes (invasiveness, pain, and psychological stress and bio-hazardous waste generated from needles), thereby increasing patient appeal and compliance. This review focuses on the current state of long-acting transdermal drug delivery, including adhesive patches, microneedles, and molecularly imprinted polymeric systems. Each subsection describes an approach including key considerations in formulation development, design, and process parameters with schematics. An overview of commercially available conventional (adhesive) patches for long-acting drug delivery (longer than 24 h), the reservoir- and matrix-type systems under preclinical evaluation, as well as the advanced transdermal formulations, such as the core-shell, nanoformulations-incorporated and stimuli-responsive microneedles, and 3D-printed and molecularly imprinted polymers that are in development, is also provided. Finally, we elaborated on translational aspects, challenges in patch formulation development, and future directions for the clinical advancement of new long-acting transdermal products.


Assuntos
Administração Cutânea , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Humanos , Animais , Adesivo Transdérmico , Agulhas , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
3.
Int J Pharm ; 654: 123992, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479485

RESUMO

Linagliptin is a dipeptidyl peptidase-4 inhibitor used for the management of type-2 diabetes. US FDA-approved products are available exclusively as oral tablets. The inherent drawbacks of the oral administration route necessitate exploring delivery strategies via other routes. In this study, we investigated the feasibility of transdermal administration of linagliptin through various approaches. We compared chemical penetration enhancers (oleic acid, oleyl alcohol, and isopropyl myristate) and physical enhancement techniques (iontophoresis, sonophoresis, microneedles, laser, and microdermabrasion) to understand their potential to improve transdermal delivery of linagliptin. To our knowledge, this is the first reported comparison of chemical and physical enhancement techniques for the transdermal delivery of a moderately lipophilic molecule. All physical enhancement techniques caused a significant reduction in the transepithelial electrical resistance of the skin samples. Disruption of the skin's structure post-treatment with physical enhancement techniques was further confirmed using characterization techniques such as dye binding, histology, and confocal microscopy. In vitro permeation testing (IVPT) demonstrated that the passive delivery of linagliptin across the skin was < 5 µg/sq.cm. Two penetration enhancers - oleic acid (93.39 ± 8.34 µg/sq.cm.) and oleyl alcohol (424.73 ± 42.86 µg/sq.cm.), and three physical techniques - iontophoresis (53.05 ± 0.79 µg/sq.cm.), sonophoresis (141.13 ± 34.22 µg/sq.cm.), and laser (555.11 ± 78.97 µg/sq.cm.) exceeded the desired target delivery for therapeutic effect. This study established that linagliptin is an excellent candidate for transdermal delivery and thoroughly compared chemical penetration and physical transdermal delivery strategies.


Assuntos
Álcoois Graxos , Linagliptina , Absorção Cutânea , Administração Cutânea , Linagliptina/metabolismo , Ácido Oleico/metabolismo , Pele/metabolismo , Iontoforese/métodos , Sistemas de Liberação de Medicamentos/métodos
4.
Int J Pharm ; 642: 123159, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37336303

RESUMO

NAL's hydrophilicity and the inherent lipophilic properties of the stratum corneum hinders its capacity for immediate delivery through skin in opioid rescue cases. In this study, we had sought to investigate the feasibility of using minimally invasive physical ablative techniques including sonophoresis, laser, dermaplaning, microneedles, and microdermabrasion for systemically delivering NAL via the skin. These techniques reduced lag time to NAL delivery to about 3-12 min from 71.22 ± 9.62 min seen for passive delivery. Also, they all significantly enhanced the amount of NAL delivered in 1 h and over 24 h period of evaluation as compared to the passive group (p < 0.05). Sonophoresis and laser showed the greatest delivery in 1 h, followed by dermaplaning. The cumulative amount of drug delivered by these approaches in 1 h were 1277.95 ± 387.06, 83.33 ± 11.11, 30.66 ± 5.67 µg/cm2, respectively. Though the most remarkable, inconsistencies in in vitro permeation profile of NAL were observed with the 1 MHz ultrasound frequency used. With proper optimization of the conditions of use and design, the different approaches explored in this study can be potentially applied for the systemic delivery of naloxone in opioid overdose emergencies and opioid disaccustoming purposes.


Assuntos
Técnicas de Ablação , Absorção Cutânea , Naloxona/metabolismo , Analgésicos Opioides/metabolismo , Administração Cutânea , Pele/metabolismo , Sistemas de Liberação de Medicamentos/métodos
5.
Food Chem ; 340: 127979, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32920303

RESUMO

Vitamin D deficiency has been linked to various diseases, but could be rectified via fortified food stuffs or supplementation. In this study 39 different hydrophobic deep eutectic solvents were evaluated for green extraction of ergosterol from mushroom. Extraction parameters (e.g. time, solvent volume) were optimized using response surface methodology (RSM) and a maximum extraction yield of 6995.00 µg ergosterol/g dry weight mushroom was attained with menthol: pyruvic acid. The extracted ergosterol was purified using a novel methodology and the extraction solvent was reused for six cycles, while retaining extraction efficiency (up to 28%). The ergosterol was exposed to ultra-violet radiation for conversion to ergocalciferol (vitamin D2) resulting in a yield of ergocalciferol that was equivalent to 2142.01 µg/g dry weight mushroom.


Assuntos
Agaricus/química , Ergosterol/isolamento & purificação , Mentol/química , Fracionamento Químico/métodos , Ergocalciferóis/química , Ergosterol/química , Indústria de Processamento de Alimentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Solventes/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA