Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 50(6): 927-938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514363

RESUMO

OBJECTIVE: Tissue susceptibility to histotripsy disintegration has been reported to depend on its elastic properties. This work was aimed at investigation of histotripsy efficiency for liquefaction of human hematomas, depending on their stiffness and degree of retraction over time (0-10 d). METHODS: As an in vitro hematoma model, anticoagulated human blood samples (200 mL) were recalcified at different temperatures. In one set of samples, the shear modulus was measured by shear wave elastography during blood clotting at 10℃, 22℃ and 37℃, and then daily during further aging. The ultrastructure of the samples was analyzed daily with scanning electron microscopy (SEM). Another set of blood samples (50-200 mL) were recalcified at 37℃ for density and retraction measurements over aging and exposed to histotripsy at varying time points. Boiling histotripsy (2.5 ms pulses) and hybrid histotripsy (0.2 ms pulses) exposures (2 MHz, 1% dc, P+/P-/As = 182/-27/207 MPa in situ) were used to produce either individual cigar-shaped or volumetric (0.8-3 mL) lesions in samples incubated for 3 h, 5 d and 10 d. The obtained lesions were sized, then the lysate aspirated under B-mode guidance was analyzed ultrastructurally and diluted in distilled water for sizing of residual fragments. RESULTS: It was found that clotting time decreased from 113 to 25 min with the increase in blood temperature from 10℃ to 37℃. The shear modulus increased to 0.53 ± 0.17 kPa during clotting and remained constant within 8 d of incubation at 2℃. Sample volumes decreased by 57% because of retraction within 10 d. SEM revealed significant echinocytosis but unchanged ultrastructure of the fibrin meshwork. Liquefaction rate and lesion dimensions produced with the same histotripsy protocols correlated with the increase in the degree of retraction and were lower in retracted samples versus freshly clotted samples. More than 80% of residual fibrin fragments after histotripsy treatment were shorter than 150 µm; the maximum length was 208 µm, allowing for unobstructed aspiration of the lysate with most clinically used needles. CONCLUSION: The results indicate that hematoma susceptibility to histotripsy liquefaction is not entirely determined by its stiffness, and correlates with the retraction degree.


Assuntos
Módulo de Elasticidade , Hematoma , Humanos , Técnicas In Vitro , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Técnicas de Imagem por Elasticidade/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37074881

RESUMO

Pulsed high-intensity focused ultrasound (pHIFU) uses nonlinearly distorted millisecond-long ultrasound pulses of moderate intensity to induce inertial cavitation in tissue without administration of contrast agents. The resulting mechanical disruption permeabilizes the tissue and enhances the diffusion of systemically administered drugs. This is especially beneficial for tissues with poor perfusion such as pancreatic tumors. Here, we characterize the performance of a dual-mode ultrasound array designed for image-guided pHIFU therapies in producing inertial cavitation and ultrasound imaging. The 64-element linear array (1.071 MHz, an aperture of 14.8×51.2 mm, and a pitch of 0.8 mm) with an elevational focal length of 50 mm was driven by the Verasonics V-1 ultrasound system with extended burst option. The attainable focal pressures and electronic steering range in linear and nonlinear operating regimes (relevant to pHIFU treatments) were characterized through hydrophone measurements, acoustic holography, and numerical simulations. The steering range at ±10% from the nominal focal pressure was found to be ±6 mm axially and ±11 mm azimuthally. Focal waveforms with shock fronts of up to 45 MPa and peak negative pressures up to 9 MPa were achieved at focusing distances of 38-75 mm from the array. Cavitation behaviors induced by isolated 1-ms pHIFU pulses in optically transparent agarose gel phantoms were observed by high-speed photography across a range of excitation amplitudes and focal distances. For all focusing configurations, the appearance of sparse, stationary cavitation bubbles occurred at the same P- threshold of 2 MPa. As the output level increased, a qualitative change in cavitation behavior occurred, to pairs and sets of proliferating bubbles. The pressure P- at which this transition was observed corresponded to substantial nonlinear distortion and shock formation in the focal region and was thus dependent on the focal distance of the beam ranging within 3-4 MPa for azimuthal F -numbers of 0.74-1.5. The array was capable of B-mode imaging at 1.5 MHz of centimeter-sized targets in phantoms and in vivo pig tissues at depths of 3-7 cm, relevant to pHIFU applications in abdominal targets.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias Pancreáticas , Animais , Suínos , Meios de Contraste , Ultrassonografia , Imagens de Fantasmas , Microbolhas , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37030675

RESUMO

A Sonalleve magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) clinical system (Profound Medical, Mississauga, ON, Canada) has been shown to generate nonlinear ultrasound fields with shocks up to 100 MPa at the focus as required for HIFU applications such as boiling histotripsy of hepatic and renal tumors. The Sonalleve system has two versions V1 and V2 of the therapeutic array, with differences in focusing angle, focus depth, arrangement of elements, and the size of a central opening that is twice larger in the V2 system compared to the V1. The goal of this study was to compare the performance of the V1 and V2 transducers for generating high-amplitude shock-wave fields and to reveal the impact of different array geometries on shock amplitudes at the focus. Nonlinear modeling of the field in water using boundary conditions reconstructed from holography measurements shows that at the same power output, the V2 array generates 10-15-MPa lower shock amplitudes at the focus. Consequently, substantially higher power levels are required for the V2 system to reach the same shock-wave exposure conditions in histotripsy-type treatments. Although this difference is mainly caused by the smaller focusing angle of the V2 array, the larger central opening of the V2 array has a nontrivial impact. By excluding coherently interacting weakly focused waves coming from the central part of the source, the presence of the central opening results in a somewhat higher effective focusing angle and thus higher shock amplitudes at the focus. Axisymmetric equivalent source models were constructed for both arrays, and the importance of including the central opening was demonstrated. These models can be used in the "HIFU beam" software for simulating nonlinear fields of the Sonalleve V1 and V2 systems in water and flat-layered biological tissues.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ultrassonografia , Fígado/diagnóstico por imagem , Fígado/cirurgia , Água
4.
Ultrasound Med Biol ; 49(1): 62-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36207225

RESUMO

Boiling histotripsy (BH) is a focused ultrasound technology that uses millisecond-long pulses with shock fronts to induce mechanical tissue ablation. The pulsing scheme and mechanisms of BH differ from those of cavitation cloud histotripsy, which was previously developed for benign prostatic hyperplasia. The goal of the work described here was to evaluate the feasibility of using BH to ablate fresh ex vivo human prostate tissue as a proof of principle for developing BH for prostate applications. Fresh human prostate samples (N = 24) were obtained via rapid autopsy (<24 h after death, institutional review board exempt). Samples were analyzed using shear wave elastography to ensure that mechanical properties of autopsy tissue were clinically representative. Samples were exposed to BH using 10- or 1-ms pulses with 1% duty cycle under real-time B-mode and Doppler imaging. Volumetric lesions were created by sonicating 1-4 rectangular planes spaced 1 mm apart, containing a grid of foci spaced 1-2 mm apart. Tissue then was evaluated grossly and histologically, and the lesion content was analyzed using transmission electron microscopy and scanning electron microscopy. Observed shear wave elastography characterization of ex vivo prostate tissue (37.9 ± 22.2 kPa) was within the typical range observed clinically. During BH, hyperechoic regions were visualized at the focus on B-mode, and BH-induced bubbles were also detected using power Doppler. As treatment progressed, hypoechoic regions of tissue appeared, suggesting successful tissue fractionation. BH treatment was twofold faster using shorter pulses (1 ms vs. 10 ms). Histological analysis revealed lesions containing completely homogenized cell debris, consistent with histotripsy-induced mechanical ablation. It was therefore determined that BH is feasible in fresh ex vivo human prostate tissue producing desired mechanical ablation. The study supports further work aimed at translating BH technology as a clinical option for prostate ablation.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Masculino , Humanos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Próstata/diagnóstico por imagem , Próstata/cirurgia
5.
Ultrasound Med Biol ; 47(9): 2608-2621, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116880

RESUMO

Large-volume soft tissue hematomas are a serious clinical problem, which, if untreated, can have severe consequences. Current treatments are associated with significant pain and discomfort. It has been reported that in an in vitro bovine hematoma model, pulsed high-intensity focused ultrasound (HIFU) ablation, termed histotripsy, can be used to rapidly and non-invasively liquefy the hematoma through localized bubble activity, enabling fine-needle aspiration. The goals of this study were to evaluate the efficiency and speed of volumetric histotripsy liquefaction using a large in vitro human hematoma model. Large human hematoma phantoms (85 cc) were formed by recalcifying blood anticoagulated with citrate phosphate dextrose/saline-adenine-glucose-mannitol solution. Typical boiling histotripsy pulses (10 or 2 ms) or hybrid histotripsy pulses using higher-amplitude and shorter pulses (0.4 ms) were delivered at 1% duty cycle while continuously translating the HIFU focus location. Histotripsy exposures were performed under ultrasound guidance with a 1.5-MHz transducer (8-cm aperture, F# = 0.75). The volume of liquefied lesions was determined by ultrasound imaging and gross inspection. Untreated hematoma samples and samples of the liquefied lesions aspirated using a fine needle were analyzed cytologically and ultrastructurally with scanning electron microscopy. All exposures resulted in uniform liquid-filled voids with sharp edges; liquefaction speed was higher for exposures with shorter pulses and higher shock amplitudes at the focus (up to 0.32, 0.68 and 2.62 mL/min for 10-, 2- and 0.4-ms pulses, respectively). Cytological and ultrastructural observations revealed completely homogenized blood cells and fibrin fragments in the lysate. Most of the fibrin fragments were less than 20 µm in length, but a number of fragments were up to 150 µm. The lysate with residual debris of that size would potentially be amenable to fine-needle aspiration without risk for needle clogging in clinical implementation.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Bovinos , Hematoma , Humanos , Imagens de Fantasmas , Transdutores , Ultrassonografia
6.
Artigo em Inglês | MEDLINE | ID: mdl-33877971

RESUMO

"HIFU beam" is a freely available software tool that comprises a MATLAB toolbox combined with a user-friendly interface and binary executable compiled from FORTRAN source code (HIFU beam. (2021). Available: http://limu.msu.ru/node/3555?language=en). It is designed for simulating high-intensity focused ultrasound (HIFU) fields generated by single-element transducers and annular arrays with propagation in flat-layered media that mimic biological tissues. Numerical models incorporated in the simulator include evolution-type equations, either the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation or one-way Westervelt equation, for radially symmetric ultrasound beams in homogeneous and layered media with thermoviscous or power-law acoustic absorption. The software uses shock-capturing methods that allow for simulating strongly nonlinear acoustic fields with high-amplitude shocks. In this article, a general description of the software is given along with three representative simulation cases of ultrasound transducers and focusing conditions typical for therapeutic applications. The examples illustrate major nonlinear wave effects in HIFU fields including shock formation. Two examples simulate propagation in water, involving a single-element source (1-MHz frequency, 100-mm diameter, 90-mm radius of curvature) and a 16-element annular array (3-MHz frequency, 48-mm diameter, and 35-mm radius of curvature). The third example mimics the scenario of a HIFU treatment in a "water-muscle-kidney" layered medium using a source typical for abdominal HIFU applications (1.2-MHz frequency, 120-mm diameter, and radius of curvature). Linear, quasi-linear, and shock-wave exposure protocols are considered. It is intended that "HIFU beam" can be useful in teaching nonlinear acoustics; designing and characterizing high-power transducers; and developing exposure protocols for a wide range of therapeutic applications such as shock-based HIFU, boiling histotripsy, drug delivery, immunotherapy, and others.


Assuntos
Acústica , Ablação por Ultrassom Focalizado de Alta Intensidade , Simulação por Computador , Transdutores , Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-33793399

RESUMO

Pulsed focused ultrasound (pFUS) uses short acoustic pulses delivered at low duty cycle and moderate intensity to noninvasively apply mechanical stress or introduce disruption to tissue. Ultrasound-guided pFUS has primarily been used for inducing cavitation at the focus, with or without contrast agents, to promote drug delivery to tumors. When applied in tandem with contrast agents, pFUS is often administered using an ultrasound imaging probe, which has a small footprint and does not require a large acoustic window. The use of nonlinear pFUS without contrast agents was recently shown to be beneficial for localized tissue disruption, but required higher ultrasound pressure levels than a conventional ultrasound imaging probe could produce. In this work, we present the design of a compact dual-use 1-MHz transducer for ultrasound-guided pFUS without contrast agents. Nonlinear pressure fields that could be generated by the probe, under realistic power input, were simulated using the Westervelt equation. In water, fully developed shocks of 42-MPa amplitude and peak negative pressure of 8 MPa were predicted to form at the focus at 458-W acoustic power or 35% of the maximum reachable power of the transducer. In absorptive soft tissue, fully developed shocks formed at higher power (760 W or 58% of the maximum reachable power) with the shock amplitude of 33 MPa and peak negative pressure of 7.5 MPa. The electronic focus-steering capabilities of the array were evaluated and found to be sufficient to cover a target with dimensions of 19 mm in axial direction and 44 mm in transversal direction.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Transdutores , Acústica , Ondas Ultrassônicas , Ultrassonografia
8.
J Acoust Soc Am ; 146(5): EL438, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31795669

RESUMO

The authors have recently shown that irregular reflections of spark-generated pressure weak shocks from a smooth rigid surface can be studied using an optical interferometer [Karzova, Lechat, Ollivier, Dragna, Yuldashev, Khokhlova, and Blanc-Benon, J. Acoust. Soc. Am. 145(1), 26-35 (2019)]. The current study extends these results to the reflection from rough surfaces. A Mach-Zehnder interferometer is used to measure pressure waveforms. Simulations are based on the solution of axisymmetric Euler equations. It is shown that roughness causes a decrease of the Mach stem height and the appearance of oscillations in the pressure waveforms. Close to rough surfaces, the pressure was higher compared to the smooth surface.

9.
J Acoust Soc Am ; 145(1): 26, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30710976

RESUMO

The irregular reflection of weak acoustic shock waves, known as the von Neumann reflection, has been observed experimentally and numerically for spherically diverging waves generated by an electric spark source. Two optical measurement methods are used: a Mach-Zehnder interferometer for measuring pressure waveforms and a Schlieren system for visualizing shock fronts. Pressure waveforms are reconstructed from the light phase difference measured by the interferometer using the inverse Abel transform. In numerical simulations, the axisymmetric Euler equations are solved using finite-difference time-domain methods and the spark source is modeled as an instantaneous energy injection with a Gaussian shape. Waveforms and reflection patterns obtained from the simulations are in good agreement with those measured by the interferometer and the Schlieren methods. The Mach stem formation is observed close to the surface for incident pressures within the range of 800 to 4000 Pa. Similarly, as for strong shocks generated by blasts, it is found that for spherical weak shocks the Mach stem length increases with distance following a parabolic law. This study confirms the occurrence of irregular reflections at acoustic pressure levels and demonstrates the benefits of the Mach-Zehnder interferometer method when microphone measurements cannot be applied.

10.
J Acoust Soc Am ; 141(4): 2327, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28464662

RESUMO

Newer imaging and therapeutic ultrasound technologies may benefit from in situ pressure levels higher than conventional diagnostic ultrasound. One example is the recently developed use of ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe has been used to deliver the acoustic pushing pulses. The probe is a curvilinear array comprising 128 elements equally spaced along a convex cylindrical surface. The effectiveness of the treatment can be increased by using higher transducer output to provide a stronger pushing force; however nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the three-dimensional Westervelt equation with the boundary condition set to match low power measurements of the acoustic pressure field. Nonlinear focal waveforms simulated for different numbers of operating elements of the array at several output power levels were compared to fiber-optic hydrophone measurements and were found to be in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of a diagnostic imaging probe.


Assuntos
Ondas de Choque de Alta Energia , Modelos Teóricos , Transdutores de Pressão , Terapia por Ultrassom/instrumentação , Ultrassom/instrumentação , Ultrassonografia/instrumentação , Desenho de Equipamento , Dinâmica não Linear , Análise Numérica Assistida por Computador , Pressão , Reprodutibilidade dos Testes
11.
J Acoust Soc Am ; 142(6): 3402, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29289086

RESUMO

Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.

12.
J Acoust Soc Am ; 137(6): 3244-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093414

RESUMO

Accurate measurement of high-amplitude, broadband shock pulses in air is an important part of laboratory-scale experiments in atmospheric acoustics. Although various methods have been developed, specific drawbacks still exist and need to be addressed. Here, a schlieren optical method was used to reconstruct the pressure signatures of nonlinear spherically diverging short acoustic pulses generated using an electric spark source (2.5 kPa, 33 µs at 10 cm from the source) in homogeneous air. A high-speed camera was used to capture light rays deflected by refractive index inhomogeneities, caused by the acoustic wave. Pressure waveforms were reconstructed from the light intensity patterns in the recorded images using an Abel-type inversion method. Absolute pressure levels were determined by analyzing at different propagation distances the duration of the compression phase of pulses, which changed due to nonlinear propagation effects. Numerical modeling base on the generalized Burgers equation was used to evaluate the smearing of the waveform caused by finite exposure time of the high-speed camera and corresponding limitations in resolution of the schlieren technique. The proposed method allows the study of the evolution of spark-generated shock waves in air starting from the very short distances from the spark, 30 mm, up to 600 mm.

13.
J Acoust Soc Am ; 137(6): EL436-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093452

RESUMO

The aim of this study is to show the evidence of Mach stem formation for very weak shock waves with acoustic Mach numbers on the order of 10(-3) to 10(-2). Two representative cases are considered: reflection of shock pulses from a rigid surface and focusing of nonlinear acoustic beams. Reflection experiments are performed in air using spark-generated shock pulses. Shock fronts are visualized using a schlieren system. Both regular and irregular types of reflection are observed. Numerical simulations are performed to demonstrate the Mach stem formation in the focal region of periodic and pulsed nonlinear beams in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...