Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Neuropsychopharmacol ; 64: 19-29, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070667

RESUMO

Social dysfunction is commonly present in neuropsychiatric disorders of schizophrenia (SZ) and Alzheimer's disease (AD). Theory of Mind (ToM) deficits have been linked to social dysfunction in disease-specific studies. Nevertheless, it remains unclear how ToM is related to social functioning across these disorders, and which factors contribute to this relationship. We investigated transdiagnostic associations between ToM and social functioning among SZ/AD patients and healthy controls, and explored to what extent these associations relate to information processing speed or facial emotion recognition capacity. A total of 163 participants were included (SZ: n=56, AD: n=50 and age-matched controls: n=57). Social functioning was assessed with the Social Functioning Scale (SFS) and the De Jong-Gierveld Loneliness Scale (LON). ToM was measured with the Hinting Task. Information processing speed was measured by the Digit Symbol Substitution Test (DSST) and facial emotion recognition capacity by the facial emotion recognition task (FERT). Case-control deficits in Hinting Task performance were larger in AD (rrb = -0.57) compared to SZ (rrb = -0.35). Poorer Hinting Task performance was transdiagnostically associated with the SFS (ßHinting-Task = 1.20, p<0.01) and LON (ßHinting-Task = -0.27, p<0.05). DSST, but not FERT, reduced the association between the SFS and Hinting Task performance, however the association remained significant (ßHinting-Task = 0.95, p<0.05). DSST and FERT performances did not change the association between LON and Hinting Task performance. Taken together, ToM deficits are transdiagnostically associated with social dysfunction and this is partly related to reduced information processing speed.

2.
Behav Brain Res ; 276: 8-16, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24821406

RESUMO

Individual levels of physical activity, and especially of voluntary physical exercise, highly contribute to the susceptibility for developing metabolic, cardiovascular diseases, and potentially to psychiatric disorders. Here, we applied a cross-species approach to explore a candidate genetic region for voluntary exercise levels. First, a panel of mouse chromosome substitution strains was used to map a genomic region on mouse chromosome 2 that contributes to voluntary wheel running levels - a behavioral readout considered a model of voluntary exercise in humans. Subsequently, we tested the syntenic region (HSA20: 51,212,545-55,212,986) in a human sample (Saint Thomas Twin Register; n=3038) and found a significant association between voluntary exercise levels (categorized into excessive and non-excessive exercise) and an intergenic SNP rs459465 (adjusted P-value of 0.001). Taking under consideration the methodological challenges embedded in this translational approach in the research of complex phenotypes, we wanted to further test the validity of this finding. Therefore, we repeated the analysis in an independent human population (ALSPAC data set; n=2557). We found a significant association of excessive exercise with two SNPs in the same genomic region (rs6022999, adjusted P-value of P=0.011 and rs6092090, adjusted P-value of 0.012). We explored the locus for possible candidate genes by means of literature search and bioinformatics analysis of gene function and of trans-regulatory elements. We propose three potential human candidate genes for voluntary physical exercise levels (MC3R, CYP24A1, and GRM8). To conclude, the identified genetic variance in the human locus 20q13.2 may affect voluntary exercise levels.


Assuntos
Exercício Físico , Estudos de Associação Genética , Atividade Motora/genética , Locos de Características Quantitativas/genética , Receptor Tipo 3 de Melanocortina/genética , Receptores de Glutamato Metabotrópico/genética , Sintenia/genética , Vitamina D3 24-Hidroxilase/genética , Adolescente , Adulto , Animais , Mapeamento Cromossômico , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
3.
Mol Psychiatry ; 19(10): 1085-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24514567

RESUMO

Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.


Assuntos
Anorexia Nervosa/genética , Povo Asiático/genética , Calcineurina/genética , Proteínas de Transporte/genética , Estudos de Casos e Controles , Proteínas Culina/genética , Feminino , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Japão , Masculino , Metanálise como Assunto , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética
4.
Genes Brain Behav ; 13(1): 87-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24118934

RESUMO

The discovery of genetic variants that underlie a complex phenotype is challenging. One possible approach to facilitate this endeavor is to identify quantitative trait loci (QTL) that contribute to the phenotype and consequently unravel the candidate genes within these loci. Each proposed candidate locus contains multiple genes and, therefore, further analysis is required to choose plausible candidate genes. One of such methods is to use comparative genomics in order to narrow down the QTL to a region containing only a few genes. We illustrate this strategy by applying it to genetic findings regarding physical activity (PA) in mice and human. Here, we show that PA is a complex phenotype with a strong biological basis and complex genetic architecture. Furthermore, we provide considerations for the translatability of this phenotype between species. Finally, we review studies which point to candidate genetic regions for PA in humans (genetic association and linkage studies) or use mouse models of PA (QTL studies) and we identify candidate genetic regions that overlap between species. On the basis of a large variety of studies in mice and human, statistical analysis reveals that the number of overlapping regions is not higher than expected on a chance level. We conclude that the discovery of new candidate genes for complex phenotypes, such as PA levels, is hampered by various factors, including genetic background differences, phenotype definition and a wide variety of methodological differences between studies.


Assuntos
Exercício Físico , Atividade Motora/genética , Esforço Físico/genética , Locos de Características Quantitativas , Animais , Humanos , Camundongos , Modelos Animais , Fenótipo , Especificidade da Espécie
5.
Neuroscience ; 256: 262-70, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24161282

RESUMO

BACKGROUND: Depressive patients show cognitive impairments that are strongly associated with cortisol levels and hippocampus functioning that interact via unknown mechanisms. In addition, a relation between depression and hippocampal synaptic plasticity was described. METHODS: In the first experiment, strain-dependent effects of 72-h social isolation on long-term potentiation (LTP) in the CA1 area of the in vitro hippocampus, was determined. Extracellular field excitatory postsynaptic potentials were recorded and a brief high-frequency stimulation (100 Hz, 1s) was applied and recording resumed after the high frequency stimulation (HFS) for 30 min to determine the effect of HFS. In the second experiment we investigated the effect of 72 h of corticosterone treatment and the involvement of glucocorticoid receptors (GRs) in the effect of 72 h of social isolation on LTP in the CA1 area of hippocampus, in vitro. RESULTS: Genetic background has a major effect on the level of hippocampal LTP impairment in mice following social isolation. Data showed that the potentiation levels in socially housed (SH) A/J mice were significantly higher than the SH C57BL/6J mice (224.88 ± 16.65, 131.56 ± 6.25% of the baseline values, t(9)=2.648, p=0.026). However, both strains showed depressed induction of potentiation when reared in an isolated environment for 72 h, and no significant difference was recorded between the two (112.88 ± 16.65%, and 117.91 ± 3.23% of the baseline values, respectively, t(10)=0.618, p=0.551). Social isolation increased corticosterone levels significantly and chronic corticosterone infusion in SH phenocopied the LTP impairments observed in socially isolated mice. Infusion of the GR antagonist RU38486 rescued the LTP-impairments following social isolation. CONCLUSIONS: These findings support the notion that increased levels of stress hormone act via the GR on hippocampal functioning and that, in this way, the cognitive deficits in mood disorders may be restored.


Assuntos
Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Receptores de Glucocorticoides/metabolismo , Isolamento Social , Estresse Psicológico/patologia , Análise de Variância , Animais , Biofísica , Corticosterona/farmacologia , Vias de Administração de Medicamentos , Estimulação Elétrica , Hipocampo/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Mifepristona/farmacologia
6.
Genes Brain Behav ; 12(6): 653-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23777486

RESUMO

Interspecies genetic analysis of neurobehavioral traits is critical for identifying neurobiological mechanisms underlying psychiatric disorders, and for developing models for translational research. Recently, after screening a chromosome substitution strain panel in an automated home cage environment, chromosomes 15 and 19 were identified in female mice for carrying genetic loci that contribute to increased avoidance behavior (sheltering preference). Furthermore, we showed that the quantitative trait locus (QTL) for baseline avoidance behavior on chromosome 15 is homologous with a human linkage region for bipolar disorder (8q24). Similarly, we now performed comparative analysis on the QTL for avoidance behavior found on chromosome 19 and correspondingly revealed an overlap of the mouse interval and human homologous region 10q23-24, which has been previously linked to bipolar disorders. By means of a comparative genetic strategy within the human homologous region, we describe an association for TLL2 with bipolar disorder using the genome-wide association study (GWAS) data set generated by the Wellcome Trust Case Control Consortium (WTCCC). On the basis of genetic homology and mood stabilizer sensitivity, our data indicate the intriguing possibility that mouse home cage avoidance behavior may translate to a common biochemical mechanisms underlying bipolar disorder susceptibility. These findings pave new roads for the identification of the molecular mechanisms and novel treatment possibilities for this psychiatric disorder, as well as for the validity of translational research of associated psychiatric endophenotypes.


Assuntos
Transtorno Bipolar/genética , Reação de Fuga , Metaloproteases Semelhantes a Toloide/genética , Animais , Cromossomos Humanos Par 10/genética , Cromossomos de Mamíferos/genética , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Locos de Características Quantitativas , Homologia de Sequência , Especificidade da Espécie
7.
Genes Brain Behav ; 11(1): 105-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21923762

RESUMO

The neuropeptide Y (NPY) system in the brain regulates a wide variety of behavioral, metabolic and hormonal homeostatic processes required for energy balance control. During times of limited food availability, NPY promotes behavioral hyperactivity necessary to explore and prepare for novel food resources. As NPY can act via 5 different receptor subtypes, we investigated the path through which NPY affects different behavioral components relevant for adaptation to such conditions. We tested NPY Y1 and Y2 receptor knockout mice and their wild-type littermate controls in a daily scheduled limited food access paradigm with unlimited access to running wheel. Here we show that NPY Y1 receptor deficient mice lack the expression of appetitive behavior and that NPY Y2 receptors control the level of hyperactive behavior under these conditions. Thus, receptor specificity determines the differential expression of NPY-mediated behavioral adaptations to overcome a negative energy status.


Assuntos
Adaptação Fisiológica/genética , Comportamento Apetitivo/fisiologia , Comportamento Alimentar/fisiologia , Receptores de Neuropeptídeo Y/fisiologia , Animais , Feminino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Receptores de Neuropeptídeo Y/genética
8.
Genes Brain Behav ; 10(6): 658-62, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21605339

RESUMO

The behavioral characterization of animals that carry genetic disorder abnormalities in a controlled genetic and environmental background may be used to identify human deficits that are significant to understand underlying neurobiological mechanisms. Here, we studied whether previously reported object recognition impairments in mice with a supernumerary X chromosome relate to specific cognitive deficits in Klinefelter syndrome (47,XXY). We aimed to optimize face validity by studying temporal object recognition in human cognitive assays. Thirty-four boys with Klinefelter syndrome (mean age 12.01) were compared with 90 age-matched normal controls, on a broad range of visual object memory tasks, including tests for pattern and temporal order discrimination. The results indicate that subjects with Klinefelter syndrome have difficulty in the processing of visual object and pattern information. Visual object patterns seem difficult to discriminate especially when temporal information needs to be processed and reproduced. On the basis of cross-species comparison, we propose that impaired temporal processing of object pattern information is an important deficit in Klinefelter syndrome. The current study shows how cross-species behavioral characterization may be used as a starting point to understand the neurobiology of syndromal phenotypic expression. The features of this study may serve as markers for interventions in Klinefelter syndrome. Similar cross-species evaluations of standard mouse behavioral paradigms in different genetic contexts may be powerful tools to optimize genotype-phenotype relationships.


Assuntos
Cromossomos Humanos X , Transtornos Cognitivos/genética , Cognição/fisiologia , Síndrome de Klinefelter/genética , Adolescente , Animais , Criança , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Testes Neuropsicológicos , Reconhecimento Visual de Modelos/fisiologia
9.
Curr Top Behav Neurosci ; 6: 229-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21243479

RESUMO

Hyperactivity in anorexia nervosa is difficult to control and negatively impacts outcome. Hyperactivity is a key driving force to starvation in an animal model named activity-based anorexia (ABA). Recent research has started unraveling what mechanisms underlie this hyperactivity. Besides a general increase in locomotor activity that may be an expression of foraging behavior and involves frontal brain regions, the increased locomotor activity expressed before food is presented (food anticipatory behavior or FAA) involves hypothalamic neural circuits. Ghrelin plays a role in FAA, whereas decreased leptin signaling is involved in both aspects of increased locomotor activity. We hypothesize that increased ghrelin and decreased leptin signaling drive the activity of dopamine neurons in the ventral tegmental area. In anorexia nervosa patients, this altered activity of the dopamine system may be involved not only in hyperactivity but also in aberrant cognitive processing related to food.


Assuntos
Anorexia/complicações , Hipercinese/complicações , Neurobiologia , Analgésicos Opioides , Animais , Anorexia/psicologia , Modelos Animais de Doenças , Dopamina , Grelina/metabolismo , Humanos , Leptina/metabolismo , Melanocortinas , Neuropeptídeo Y
10.
Eur Neuropsychopharmacol ; 20(5): 317-26, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19896807

RESUMO

Excessive physical activity plays an important role in the progression of anorexia nervosa (AN) by accelerating weight loss during dietary restriction. To search for mechanisms underlying this trait, a panel of mouse chromosome substitution strains derived from C57BL/6J and A/J strains was exposed to a scheduled feeding paradigm and to voluntary running wheel (RW) access. Here, we showed that A/J chromosomes 4, 12 and 13 contribute to the development of a disrupted RW activity in response to daily restricted feeding. This pattern is characterized by intense RW activity during the habitual rest phase and leads to accelerated body weight loss. Regions on mouse chromosomes 4, 12 and 13 display homology with regions on human chromosomes linked with anxiety and obsessionality in AN cohorts. Therefore, our data open new roads for interspecies genetic studies of AN and for unraveling novel mechanisms and potential effective treatment strategies for these neurobehavioral traits.


Assuntos
Privação de Alimentos/fisiologia , Hipercinese/genética , Atividade Motora/genética , Análise de Variância , Animais , Peso Corporal/genética , Mapeamento Cromossômico , Ingestão de Alimentos/genética , Comportamento Exploratório , Camundongos , Especificidade da Espécie
11.
Neuroscience ; 164(4): 1477-83, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19778584

RESUMO

Locomotion is a complex behavior affected by many different brain- and spinal cord systems, as well as by variations in the peripheral nervous system. Recently, we found increased gene expression for EphA4, a gene intricately involved in motor neuron development, between high-active parental strain C57BL/6J and the low-active chromosome substitution strain 1 (CSS1). CSS1 mice carry chromosome 1 from A/J mice in a C57BL/6J genetic background, allowing localization of quantitative trait loci (QTL) on chromosome 1. To find out whether differences in motor neuron anatomy, possibly related to the changes in EphA4 expression, are involved in the motor activity differences observed in these strains, motor performance in various behavioral paradigms and anatomical differences in the ventral roots were investigated. To correlate the behavioral profiles to the spinal motor neuron morphology, not only CSS1 and its parental strains C57BL/6J (host) and A/J (donor) were examined, but also a set of other mouse inbred strains (AKR/J, 129x1/SvJ and DBA/2J). Significant differences were found between inbred strains on home cage motor activity levels, the beam balance test, grip test performance, and on alternating versus synchronous hind limb movement (hind limb hopping). Also, considerable differences were found in spinal motor neuron morphology, with A/J and CSS1 showing smaller, possibly less developed, motor neuron axons compared to all other inbred strains. For CSS1 and C57BL/6J, only genetically different for chromosome 1, a correlation was found between motor activity levels, synchronous hind limb movement and neuro-anatomical differences in spinal motor neurons. Inclusion of the other inbred strains, however, did not show this direct correlation. These data verifies the complex nature of the mammalian motor system that may be further dissected using genetic mapping populations derived from these inbred strains.


Assuntos
Axônios/ultraestrutura , Atividade Motora/fisiologia , Raízes Nervosas Espinhais/ultraestrutura , Animais , Masculino , Camundongos , Camundongos Endogâmicos , Atividade Motora/genética , Neurônios Motores/ultraestrutura , Especificidade da Espécie
12.
Genes Brain Behav ; 8(1): 13-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18721260

RESUMO

The generation of motor activity levels is under tight neural control to execute essential behaviors, such as movement toward food or for social interaction. To identify novel neurobiological mechanisms underlying motor activity levels, we studied a panel of chromosome substitution (CS) strains derived from mice with high (C57BL/6J strain) or low motor activity levels (A/J strain) using automated home cage behavioral registration. In this study, we genetically mapped the expression of baseline motor activity levels (horizontal distance moved) to mouse chromosome 1. Further genetic mapping of this trait revealed an 8.3-Mb quantitative trait locus (QTL) interval. This locus is distinct from the QTL interval for open-field anxiety-related motor behavior on this chromosome. By data mining, an existing phenotypic and genotypic data set of 2445 genetically heterogeneous mice (http://gscan.well.ox.ac.uk/), we confirmed linkage to the peak marker at 79 970 253 bp and refined the QTL to a 312-kb interval containing a single gene (A830043J08Rik). Sequence analysis showed a nucleotide deletion in the 3' untranslated region of the Riken gene. Genome-wide microarray gene expression profiling in brains of discordant F(2) individuals from CS strain 1 showed a significant upregulation of Epha4 in low-active F(2) individuals. Inclusion of a genetic marker for Epha4 confirmed that this gene is located outside of the QTL interval. Both Epha4 and A830043J08Rik are expressed in brain motor circuits, and similar to Epha4 mutants, we found linkage between reduced motor neurons number and A/J chromosome 1. Our findings provide a novel QTL and a potential downstream target underlying motor circuitry development and the expression of physical activity levels.


Assuntos
Mapeamento Cromossômico , Atividade Motora/genética , Animais , Cromossomos/genética , Primers do DNA , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Receptor EphA4/genética
13.
Behav Genet ; 39(2): 176-82, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19048365

RESUMO

The expression of motor activity levels in response to novel situations is under complex genetic and environmental control. Several genetic loci have been implicated in the regulation of this behavioral phenotype, but their relationship to epigenetic and epistatic interactions is relatively unknown. Here, we report on a quantitative trait locus (QTL) on mouse chromosome 1 for novelty-induced motor activity in the open field, using chromosome substitution strains derived from a high active host strain (C57BL/6J) and a low active donor strain (A/J). The QTL for open field (horizontal distance moved) peaked at the location of Kcnj9, however, QTL detection was initially masked by an interplay of both grandparent genetic origin and genetic co-factors influencing behavior on chromosome 1. Our findings indicate that epigenetic interactions can play an important role in the identification of behavioral QTLs and must be taken into consideration when applying behavioral genetic strategies.


Assuntos
Cromossomos/ultraestrutura , Epigênese Genética , Animais , Comportamento Animal , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Escore Lod , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
14.
Genes Brain Behav ; 8(2): 248-55, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19077119

RESUMO

Febrile seizures (FS) are the most common seizure type in children and recurrent FS are a risk factor for developing temporal lobe epilepsy. Although the mechanisms underlying FS are largely unknown, recent family, twin and animal studies indicate that genetics are important in FS susceptibility. Here, a forward genetic strategy was used employing mouse chromosome substitution strains (CSS) to identify novel FS susceptibility quantitative trait loci (QTLs). FS were induced by exposure to warm air at postnatal day 14. Video electroencephalogram monitoring identified tonic-clonic convulsion onset, defined as febrile seizure latency (FSL), as a reliable phenotypic parameter to determine FS susceptibility. FSL was determined in both sexes of the host strain (C57BL/6J), the donor strain (A/J) and CSS. C57BL/6J mice were more susceptible to FS than A/J mice. Phenotypic screening of the CSS panel identified six strains(CSS1, -2, -6 -10, -13 and -X) carrying QTLs for FS susceptibility. CSS1, -10 and -13 were less susceptible (protective QTLs), whereas CSS2, -6 and -X were more susceptible (susceptibility QTLs) to FS than the C57BL/6J strain. Our data show that mouse FS susceptibility is determined by complex genetics, which is distinct from that for chemically induced seizures. This is the first dataset using CSS to screen for a seizure trait in mouse pups. It provides evidence for common FS susceptibility QTLs that serve as starting points to fine map FS susceptibility QTLs and to identify FS susceptibility genes. This will increase our understanding of human FS, working toward the identification of new therapeutic targets.


Assuntos
Cromossomos de Mamíferos/genética , Locos de Características Quantitativas/genética , Convulsões Febris/genética , Animais , Comportamento Animal/fisiologia , Temperatura Corporal/genética , Temperatura Corporal/fisiologia , Interpretação Estatística de Dados , Eletroencefalografia , Feminino , Ligação Genética/genética , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Fenótipo , Convulsões Febris/psicologia
15.
Physiol Behav ; 94(5): 689-95, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18495181

RESUMO

Up to 80% of patients with Anorexia Nervosa (AN) demonstrate hyperactivity. Hyperactivity counteracts weight gain during treatment and is associated with poor outcome of the disease. We hypothesized that hyperactivity in AN patients has a neurobiological basis and used an animal model-based translational approach to gain insight in mechanisms underlying this hyperactivity. Previously we and others showed that leptin treatment attenuates hyperactivity in the rat activity-based anorexia (ABA) model. The mechanisms involved in this process are, however, unknown. Here we describe potential downstream effector mechanisms involved in the attenuation of hyperactivity by leptin treatment in ABA rats.


Assuntos
Anorexia Nervosa/metabolismo , Hipercinese/metabolismo , Leptina/fisiologia , Atividade Motora/fisiologia , Animais , Anorexia Nervosa/complicações , Modelos Animais de Doenças , Humanos , Hipercinese/complicações
16.
Genes Brain Behav ; 7(5): 552-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18363853

RESUMO

Increased physical activity and decreased motivation to eat are common features in anorexia nervosa. We investigated the development of these features and the potential implication of brain-derived neurotrophic factor (BDNF) and dopaminergic signalling in their development in C57BL/6J and A/J inbred mice, using the 'activity-based anorexia' model. In this model, mice on a restricted-feeding schedule are given unlimited access to running wheels. We measured dopamine receptor D2 and BDNF expression levels in the caudate putamen and the hippocampus, respectively, using in situ hybridization. We found that in response to scheduled feeding, C57BL/6J mice reduced their running wheel activity and displayed food anticipatory activity prior to food intake from day 2 of scheduled feeding as an indication of motivation to eat. In contrast, A/J mice increased running wheel activity during scheduled feeding and lacked food anticipatory activity. These were accompanied by increased dopamine receptor D2 expression in the caudate putamen and reduced BDNF expression in the hippocampus. Consistent with human linkage and association studies on BDNF and dopamine receptor D2 in anorexia nervosa, our study shows that dopaminergic and BDNF signalling are altered as a function of susceptibility to activity-based anorexia. Differences in gene expression and behaviour between A/J and C57BL/6J mice indicate that mouse genetic mapping populations based on these progenitor lines are valuable for identifying molecular determinants of anorexia-related traits.


Assuntos
Anorexia Nervosa/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Restrição Calórica , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Animais , Anorexia Nervosa/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/fisiologia , Hibridização In Situ , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Neostriado/fisiologia , Condicionamento Físico Animal , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Especificidade da Espécie
17.
J Neural Transm (Vienna) ; 114(9): 1233-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17530161

RESUMO

In anorexia nervosa (AN), hyperactivity is observed in about 80% of patients and has been associated with low leptin levels in the acute stage of AN and in anorexia animal models. To further understand the importance of this correlation in AN, we investigated the relationship between hypoleptinaemia and hyperactivity in AN patients longitudinally and assessed their predictive value for recovery. Body weight, activity levels, and serum leptin levels were assessed in adolescents and adult AN patient groups at the start and during treatment, up to a year. In the adolescent group, initial leptin and activity levels were correlated. This negative correlation changes over time into a positive correlation with physiological recovery. Treatment outcome in both groups could be predicted by initial BMI and leptin levels but not by activity levels. No major relationship of activity with the course of recovery was detected, suggesting that in contrast to the acute stage of the disease, leptin and activity levels during the recovery process are dissociated.


Assuntos
Anorexia Nervosa/sangue , Hipercinese/sangue , Leptina/sangue , Recuperação de Função Fisiológica/fisiologia , Doença Aguda , Adolescente , Anorexia Nervosa/fisiopatologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Estudos Prospectivos , Adulto Jovem
18.
Mol Psychiatry ; 12(4): 324-30, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17389901

RESUMO

Family and twin studies have revealed that genetic factors play a major role in psychiatric disorders, however, attempts to find susceptibility genes for these complex disorders have been largely unsuccessful. Therefore, new research strategies are required to tackle the complex interactions of genes, developmental, and environmental events. Here, we will address a behavioural domain concept that focuses on the genetics of behavioural domains relevant to both animal behaviour and across human psychiatric disorders. We believe that interspecies trait genetics rather than complex syndrome genetics will optimize genotype-phenotype relationships for psychiatric disorders and facilitate the identification of biological substrates underlying these disorders.


Assuntos
Modelos Animais de Doenças , Genética Comportamental , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Animais , Comportamento Animal/fisiologia , Mapeamento Cromossômico , Meio Ambiente , Humanos , Camundongos , Fenótipo
19.
Br J Pharmacol ; 149(7): 815-27, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17043670

RESUMO

Mutations in the human melanocortin (MC)4 receptor have been associated with obesity, which underscores the relevance of this receptor as a drug target to treat obesity. Infusion of MC4R agonists decreases food intake, whereas inhibition of MC receptor activity by infusion of an MC receptor antagonist or with the inverse agonist AgRP results in increased food intake. This review addresses the role of the MC system in different aspects of feeding behaviour. MC4R activity affects meal size and meal choice, but not meal frequency, and the type of diet affects the efficacy of MC4R agonists to reduce food intake. The central sites involved in the different aspects of feeding behaviour that are affected by MC4R signalling are being unravelled. The paraventricular nucleus plays an important role in food intake per se, whereas MC signalling in the lateral hypothalamus is associated with the response to a high fat diet. MC4R signalling in the brainstem has been shown to affect meal size. Further genetic, behavioural and brain-region specific studies need to clarify how the MC4R agonists affect feeding behaviour in order to determine which obese individuals would benefit most from treatment with these drugs. Application of MCR agonists in humans has already revealed side effects, such as penile erections, which may complicate introduction of these drugs in the treatment of obesity.


Assuntos
Regulação do Apetite , Melanocortinas/metabolismo , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Proteína Relacionada com Agouti , Animais , Fármacos Antiobesidade/farmacologia , Depressores do Apetite/farmacologia , Regulação do Apetite/efeitos dos fármacos , Encéfalo/metabolismo , Dieta , Ingestão de Energia , Comportamento Alimentar , Preferências Alimentares , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Camundongos , Camundongos Transgênicos , Mutação , Fenômenos Fisiológicos da Nutrição , Obesidade/genética , Obesidade/fisiopatologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
Genes Brain Behav ; 5(6): 458-66, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16923150

RESUMO

Here we present a newly developed tool for continuous recordings and analysis of novelty-induced and baseline behaviour of mice in a home cage-like environment. Aim of this study was to demonstrate the strength of this method by characterizing four inbred strains of mice, C57BL/6, DBA/2, C3H and 129S2/Sv, on locomotor activity. Strains differed in circadian rhythmicity, novelty-induced activity and the time-course of specific behavioural elements. For instance, C57BL/6 and DBA/2 mice showed a much faster decrease in activity over time than C3H and 129S2/Sv mice. Principal component analysis revealed two major factors within locomotor activity, which were defined as 'level of activity' and 'velocity/stops'. These factors were able to distinguish strains. Interestingly, mice that displayed high levels of activity in the initial phase of the home cage test were also highly active during an open-field test. Velocity and the number of stops during movement correlated positively with anxiety-related behaviour in the elevated plus maze. The use of an automated home cage observation system yields temporal changes in elements of locomotor activity with an advanced level of spatial resolution. Moreover, it avoids the confounding influence of human intervention and saves time-consuming human observations.


Assuntos
Comportamento Animal/fisiologia , Etologia/instrumentação , Etologia/métodos , Abrigo para Animais/tendências , Neuropsicologia/instrumentação , Neuropsicologia/métodos , Animais , Transtornos de Ansiedade/genética , Automação/métodos , Automação/normas , Encéfalo/fisiologia , Ritmo Circadiano/genética , Ambiente Controlado , Feminino , Predisposição Genética para Doença/genética , Abrigo para Animais/normas , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Atividade Motora/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...