Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroimage Clin ; 36: 103201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36126518

RESUMO

This study aimed to evaluate the use of diffusion kurtosis imaging (DKI) to detect microstructural abnormalities within the temporal pole (TP) and its temporopolar cortex in temporal lobe epilepsy (TLE) patients. DKI quantitative maps were obtained from fourteen lesional TLE and ten non-lesional TLE patients, along with twenty-three healthy controls. Data collected included mean (MK); radial (RK) and axial kurtosis (AK); mean diffusivity (MD) and axonal water fraction (AWF). Automated fiber quantification (AFQ) was used to quantify DKI measurements along the inferior longitudinal (ILF) and uncinate fasciculus (Unc). ILF and Unc tract profiles were compared between groups and tested for correlation with disease duration. To characterize temporopolar cortex microstructure, DKI maps were sampled at varying depths from superficial white matter (WM) towards the pial surface. Patients were separated according to the temporal lobe ipsilateral to seizure onset and their AFQ results were used as input for statistical analyses. Significant differences were observed between lesional TLE and controls, towards the most temporopolar segment of ILF and Unc proximal to the TP within the ipsilateral temporal lobe in left TLE patients for MK, RK, AWF and MD. No significant changes were observed with DKI maps in the non-lesional TLE group. DKI measurements correlated with disease duration, mostly towards the temporopolar segments of the WM bundles. Stronger differences in MK, RK and AWF within the temporopolar cortex were observed in the lesional TLE and noticeable differences (except for MD) in non-lesional TLE groups compared to controls. This study demonstrates that DKI has potential to detect subtle microstructural alterations within the temporopolar segments of the ILF and Unc and the connected temporopolar cortex in TLE patients including non-lesional TLE subjects. This could aid our understanding of the extrahippocampal areas, more specifically the temporal pole role in seizure generation in TLE and might inform surgical planning, leading to better seizure outcomes.


Assuntos
Epilepsia do Lobo Temporal , Substância Branca , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Lobo Temporal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Convulsões
2.
J Magn Reson Imaging ; 53(4): 1175-1187, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33098227

RESUMO

BACKGROUND: Diffusion kurtosis imaging (DKI) quantifies the non-Gaussian diffusion of water within tissue microstructure. However, it has increased fitting parameters and requires higher b-values. Evaluation of DKI reproducibility is important for clinical purposes. PURPOSE: To assess the reproducibility in whole-brain high-resolution DKI at varying b-values. STUDY TYPE: Retrospective. SUBJECTS AND PHANTOMS: In all, 44 individuals from the test-retest Human Connectome Project (HCP) database and 12 3D-printed phantoms. FIELD STRENGTH/SEQUENCE: Diffusion-weighted multiband echo-planar imaging sequence at 3T and 9.4T. magnetization-prepared rapid acquisition gradient echo at 3T for in vivo structural data only. ASSESSMENT: From HCP data with b-values = 1000, 2000, 3000 s/mm2 (dataset A), two additional datasets with b-values = 1000, 3000 s/mm2 (dataset B) and b-values = 1000, 2000 s/mm2 (dataset C) were extracted. Estimated DKI metrics from each dataset were used for evaluating reproducibility and fitting quality in white matter (WM) and gray matter (GM) based on whole-brain and regions of interest (ROIs). STATISTICAL TESTS: DKI reproducibility was assessed using the within-subject coefficient of variation (CoV), fitting residuals to evaluate DKI fitting accuracy and Pearson's correlation to investigate the presence of systematic biases. Repeated measures analysis of variance was used for statistical comparison. RESULTS: Datasets A and B exhibited lower DKI CoVs (<20%) compared to C (<50%) in both WM and GM ROIs (all P < 0.05). This effect varies between DKI and DTI parameters (P < 0.005). Whole-brain fitting residuals were consistent across datasets (P > 0.05), but lower residuals in dataset B were detected for the WM ROIs (P < 0.001). A similar trend was observed for the phantom data CoVs (<7.5%) at varying fiber orientations for datasets A and B. Finally, dataset C was characterized by higher residuals across the different fiber crossings (P < 0.05). DATA CONCLUSION: The study demonstrates that high reproducibility can still be achieved within a reasonable scan time, specifically dataset B, supporting the potential of DKI for aiding clinical tools in detecting microstructural changes.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Imagem Ecoplanar , Feminino , Humanos , Masculino , Imagens de Fantasmas , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA