Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8553, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237102

RESUMO

Three-dimensional (3D) imaging at cellular resolution improves our understanding of the brain architecture and is crucial for structural and functional integration as well as for the understanding of normal and pathological conditions in the brain. We developed a wide-field fluorescent microscope for 3D imaging of the brain structures using deep ultraviolet (DUV) light. This microscope allowed fluorescence imaging with optical sectioning due to the large absorption at the surface of the tissue and hence low tissue penetration of DUV light. Multiple channels of fluorophore signals were detected using single or a combination of dyes emitting fluorescence in the visible range of spectrum upon DUV excitation. Combination of this DUV microscope with microcontroller-based motorized stage enabled wide-field imaging of a coronal section of the cerebral hemisphere in mouse for deciphering cytoarchitecture of each substructure in detail. We extended this by integrating vibrating microtome which allowed serial block-face imaging of the brain structure such as the habenula in mouse. Acquired images were with resolution high enough for quantification of the cell numbers and density in the mouse habenula. Upon block-face imaging of the tissues covering entire extent of the cerebral hemisphere of the mouse brain, acquired data were registered and segmented for quantification of cell number in each brain regions. Results in the current analysis indicated that this novel microscope could be a convenient tool for large-scale 3D analysis of the brain in mice.


Assuntos
Encéfalo , Imageamento Tridimensional , Camundongos , Animais , Imageamento Tridimensional/métodos , Microscopia de Fluorescência , Encéfalo/diagnóstico por imagem , Microscopia Ultravioleta , Imagem Óptica
2.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34479979

RESUMO

Voluntary wheel-running activity is a way to assess rodents' circadian rhythm and motivation for exercise. Deficits in these behaviors are implicated in the pathophysiology of sleep and psychiatric disorders. Limited space in animal facilities can hamper long-term monitoring of running wheel activity outside of the home cage. To address this issue, we provide a stand-alone solution to monitor the wheel-running activity of mice in their home cage. This system, named the wheel-running activity acquisition (WRAQ) system, is based on a microcontroller driven by a lithium polymer battery. With the WRAQ, we can record the wheel-running activity and illumination data for at least 30 d. Applying the WRAQ to an endotoxemia mouse model robustly detected the altered wheel-running activity and its recovery. With wireless data transfer capability extension, the system also allows for online monitoring and reporting of the circadian time (CT). We used the online monitoring of wheel-running activity with this extended WRAQ system and observed a significant shift of the active period in the circadian rhythm following a temporal chemogenetic activation of the suprachiasmatic nucleus (SCN)-subparaventricular zone (SPZ). Together, these findings indicate that the WRAQ system is a novel and cost-effective solution for the analysis of wheel-running activity in mice.


Assuntos
Atividade Motora , Núcleo Supraquiasmático , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Camundongos , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA