Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444847

RESUMO

Two crystalline phases, which are analogues of common secondary uranyl minerals, namely, becquerelite (Ca[(UO2)6O4 (OH)6]·8H2O) and phurcalite (Ca2[(UO2)3O2 (PO4)2]·7H2O) were identified on the surface of a Chernobyl corium-containing sample affected by hydrothermal alteration in distilled water at 150 °C for one year. Phases were characterized using Single-Crystal X-ray Diffraction Analysis (SCXRD) as well as optical and scanning electron microscopy. Features of the structural architecture of novel phases, which come from the specific chemical composition of the initial fragment of Chernobyl sample, are reported and discussed. Precise identification of these phases is important for modelling of severe nuclear accidents and their long-term consequences, including expected corium-water interaction processes at three damaged Units of the Nuclear Power Plant Fukushima Daiichi.

2.
Materials (Basel) ; 15(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36233986

RESUMO

Through the combination of low-temperature hydrothermal synthesis and room-temperature evaporation, a synthetic phase similar in composition and crystal structure to the Earth's most complex mineral, ewingite, was obtained. The crystal structures of both natural and synthetic compounds are based on supertetrahedral uranyl-carbonate nanoclusters that are arranged according to the cubic body-centered lattice principle. The structure and composition of the uranyl carbonate nanocluster were refined using the data on synthetic material. Although the stability of natural ewingite is higher (according to visual observation and experimental studies), the synthetic phase can be regarded as a primary and/or metastable reaction product which further re-crystallizes into a more stable form under environmental conditions.

3.
J Appl Crystallogr ; 54(Pt 6): 1656-1663, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963763

RESUMO

In this work, the structures of chemically related uranyl-oxide minerals agrinierite and rameauite have been revisited and some corrections to the available structure data are provided. Both structures were found to be twinned. The two minerals are chemically similar, and though their structures differ considerably, their unit-cell metrics are similar. Agrinierite was found to be twinned by metric merohedry (diffraction type I), whereas the structure of rameauite is twinned by reticular merohedry (diffraction type II). The twinning of the monoclinic unit cells (true cells) leads to pseudo-orthorhombic or pseudo-tetragonal supercells in the single-crystal diffraction patterns of both minerals. According to the new data and refinement, agrinierite is monoclinic (space group Cm), with a = 14.069 (3), b = 14.220 (3), c = 13.967 (3) Å, ß = 120.24 (12)° and V = 2414.2 (12) Å3 (Z = 2). The twinning can be expressed as a mirror in (101) (apart from the inversion twin), which leads to a supercell with a = 14.121, b = 14.276, c = 24.221 Šand V = 2 × 2441 Å3, which is F centered. The new structure refinement converged to R = 3.54% for 6545 unique observed reflections with I > 3σ(I) and GOF = 1.07. Rameauite is also monoclinic (space group Cc), with a = 13.947 (3), b = 14.300 (3), c = 13.888 (3) Å, ß = 118.50 (3)° and V = 2434.3 (11) Å3 (Z = 2). The twinning can be expressed as a mirror in (101) (apart from the inversion twin), which leads to a supercell with a = 14.223, b = 14.300, c = 23.921 Šand V = 2 × 2434 Å3, which is C centered. The new structure refinement of rameauite converged to R = 4.23% for 2344 unique observed reflections with I > 3σ(I) and GOF = 1.48. The current investigation documented how peculiar twinning can be, not only for this group of minerals, and how care must be taken in handling the data biased by twinning.

4.
Inorg Chem ; 60(20): 15169-15179, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34559506

RESUMO

Sedovite, U4+(Mo6+O4)2·nH2O, is reported as being one of the earliest supergene minerals formed of the secondary zone. The difficulty of isolating enough pure material limits studies to techniques that can access the nanoscale combined with theoretical analyses. The crystal structure of sedovite has been solved and refined using the dynamical approach from three-dimensional electron diffraction data collected on natural nanocrystals found among iriginite. At 100 K, sedovite is monoclinic a ≈ 6.96 Å, b ≈ 9.07 Å, c ≈ 12.27 Å, and V ≈ 775 Å3 with space group C2/c. The microporous structure presents a characteristic framework built from uranium polyhedra and disordered Mo pyramids creating pore hosting water molecules. To confirm the formula U4+(Mo6+O4)2·nH2O, the possible presence of a hydroxyl group that would promote Mo5+ was tested with density functional theory (DFT) computations at the ambient temperature. DFT predicts that sedovite is a ferromagnetic insulator with a fundamental bandgap of Eg ∼ 1.7 eV with its chemical and physical properties dominated by U4+ rather than Mo6+. The structural complexity, IG,tot, of sedovite was evaluated in order to get indirect information about the missing formation conditions.

5.
Sci Rep ; 9(1): 12652, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477776

RESUMO

Three new polymorphs of aluminosilicate paracelsian, BaAl2Si2O8, have been discovered using synchrotron-based in situ high-pressure single crystal X-ray diffraction. The first isosymmetric phase transition (from paracelsian-I to paracelsian-II) occurs between 3 and 6 GPa. The phase transition is associated with the formation of pentacoordinated Al3+ and Si4+ ions, which occurs in a stepwise fashion by sequential formation of Al-O and Si-O bonds additional to those in AlO4 and SiO4 tetrahedra, respectively. The next phase transition occurs between 25 and 28 GPa and is accompanied by the symmetry change from monoclinic (P21/c) to orthorhombic (Pna21). The structure of paracelsian-III consists of SiO6 octahedra, AlO6 octahedra and distorted AlO4 tetrahedra, i.e. the transition is reconstructive and associated with the changes of Si4+ and Al3+ coordination, which show rather complex behaviour with the general tendency towards increasing coordination numbers. The third phase transition is observed between 28 and 32 GPa and results in the symmetry decreasing from Pna21 to Pn. The transition has a displacive character. In the course of the phase transformation pathway up to 32 GPa, the structure of polymorphs becomes denser: paracelsian-II is based upon elements of cubic and hexagonal close-packing arrangements of large O2- and Ba2+ ions, whereas, in the crystal structure of paracelsian-III and IV, this arrangement corresponds to 9-layer closest-packing with the layer sequence ABACACBCB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...