Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2019: 689-693, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374711

RESUMO

For individuals with severe motor deficiencies, controlling external devices such as robotic arms or wheelchairs can be challenging, as many devices require some degree of motor control to be operated, e.g. when controlled using a joystick. A brain-computer interface (BCI) relies only on signals from the brain and may be used as a controller instead of muscles. Motor imagery (MI) has been used in many studies as a control signal for BCIs. However, MI may not be suitable for all control purposes, and several people cannot obtain BCI control with MI. In this study, the aim was to investigate the feasibility of decoding covert speech from single-trial EEG and compare and combine it with MI. In seven healthy subjects, EEG was recorded with twenty-five channels during six different actions: Speaking three words (both covert and overt speech), two arm movements (both motor imagery and execution), and one idle class. Temporal and spectral features were derived from the epochs and classified with a random forest classifier. The average classification accuracy was $67 \pm 9$ % and $75\pm 7$ % for covert and overt speech, respectively; this was 5-10 % lower than the movement classification. The performance of the combined movement-speech decoder was $61 \pm 9$ % and $67\pm 7$ % (covert and overt), but it is possible to have more classes available for control. The possibility of using covert speech for controlling a BCI was outlined; this is a step towards a multimodal BCI system for improved usability.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Fala/fisiologia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Atividade Motora/fisiologia , Movimento , Adulto Jovem
2.
IEEE Int Conf Rehabil Robot ; 2019: 1067-1072, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374771

RESUMO

An assistive robotic manipulator (ARM) can provide independence and improve the quality of life for patients suffering from tetraplegia. However, to properly control such device to a satisfactory level without any motor functions requires a very high performing brain-computer interface (BCI). Steady-state visual evoked potentials (SSVEP) based BCI are among the best performing. Thus, this study investigates the design of a system for a full workspace control of a 7 degrees of freedom ARM. A SSVEP signal is elicited by observing a visual stimulus flickering at a specific frequency and phase. This study investigates the best combination of unique frequencies and phases to provide a 16-target BCI by testing three different systems off line. Furthermore, a fourth system is developed to investigate the impact of the stimulating monitor refresh rate. Experiments conducted on two subjects suggest that a 16-target BCI created by four unique frequencies and 16-unique phases provide the best performance. Subject 1 reaches a maximum estimated ITR of 235 bits/min while subject 2 reaches 140 bits/min. The findings suggest that the optimal SSVEP stimuli to generate 16 targets are a low number of frequencies and a high number of unique phases. Moreover, the findings do not suggest any need for considering the monitor refresh rate if stimuli are modulated using a sinusoidal signal sampled at the refresh rate.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais/fisiologia , Robótica , Eletroencefalografia , Humanos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...