Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 37: 101630, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234370

RESUMO

Central nervous system (CNS) lesions can repeatedly be de-and remyelinated during demyelinating diseases such as multiple sclerosis (MS). Here, we designed an intermittent demyelination model by 0.3 % Cuprizone feeding in C57/BL6 mice followed by two weeks recovery. Histochemical staining of luxol fast blue (LFB) was used for study of remyelination, detection of glial and endothelial cells was performed by immunohistochemistry staining for the following antibodies: anti Olig2 for oligodendrocyte progenitor cells, anti APC for mature oligodendrocytes, anti GFAP for astrocytes, and anti Iba-1 for microglia/macrophages, anti iNOS for M1 microglia/macrophage phenotype, anti TREM-2 for M2 microglia/macrophage phenotype and anti CD31 for endothelial cells. Also, real-time polymerase chain reaction was performed for assessment of the expression of the targeted genes. LFB staining results showed enhanced remyelination in the intermittent cuprizone (INTRCPZ) group, which was accompanied by improved motor function, increased mature oligodendrocyte cells, and reduction of astrogliosis and microgliosis. Moreover, switching from M1 to M2 polarity increased in the INTRCPZ group that was in association with downregulation of pro-inflammatory and upregulation of anti-inflammatory genes. Finally, evaluation of microvascular changes revealed a remarkable decrease in the endothelial cells in the cuprizone (CPZ) group which recovered in the INTERCPZ group. The outcomes demonstrate enhanced myelin content during recovery in the intermittent demyelination model which is in association with reshaping macrophage polarity and modification of glial and endothelial cells.

3.
Heliyon ; 9(11): e21741, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954351

RESUMO

Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) which causes various symptoms such as fatigue, dyscoordination weakness and visual weakness. The intricacy of the immune system and obscure etiology are the main reasons for the lack of a definite treatment for MS. Oxidative stress is one of the most important key factors in MS pathogenesis. It can enhance inflammation, neurodegeneration and autoimmune-mediated processes, which can lead to excessive demyelination and axonal disruption. Recently, promising effects of Quercetin as a non-pharmacological anti-oxidant therapy have been reported in preclinical studies of MS disease. In this review, we provide a compendium of preclinical and clinical studies that have investigated the effects of Quercetin on MS disease to evaluate its potential utility as a complementary therapy in MS. Quercetin treatment in MS disease not only protects the CNS against oxidative stress and neuroinflammation, but it also declines the demyelination process and promotes remyelination potential. The present study clarifies the reported knowledge on the beneficial effects of Quercetin against MS, with future implication as a neuroprotective complementary therapy.

7.
Neurochem Res ; 48(6): 1597-1610, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36723727

RESUMO

It has been indicated that calorie restriction (CR) leads to several neuroprotective effects against physiological aging and different neurodegenerative disorders. Unfortunately, the definite therapeutic strategy is not introduced for Multiple sclerosis (MS) as an autoimmune disease of central nervous system (CNS) and researchers are striving to find the best treatment procedures and then optimize them. More recently, several preclinical studies have reported beneficial effects of CR on MS. It was stated that CR can decline demyelination, improve remyelination and decrease neuroinflammation in animal model of MS, as well as reduce body weight and enhance emotional wellbeing in MS patients. In this context we designed this review to examine studies exploring the effects of CR on MS disease based on the clinical and animal models to highlight involved mechanistic implications and future prospective.


Assuntos
Esclerose Múltipla , Remielinização , Animais , Esclerose Múltipla/tratamento farmacológico , Restrição Calórica , Sistema Nervoso Central , Modelos Animais de Doenças , Bainha de Mielina/fisiologia
8.
Res Vet Sci ; 155: 29-35, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610243

RESUMO

Improvement of embryo culture media using antioxidant agents could help to improve embryo quality against environmental factors such as visible light and could overcome implantation failures. The usefulness of the melatonin against the effect of light on the expression of the primary implantation receptors, ErbB1 and ErbB4 on pre-implantation mouse embryo was investigated. Two-cell mouse embryos were exposed to the 1600 LUX light for 30 min then randomly divided into 3 groups including: Melatonin-Treated; Luzindole Treated and Simple media as a Control group. After 72-96  The expanded blastocysts were examined for morphological quality of the embryos by Hoechst and propidium iodide staining and for the expression of ErbB1 and ErbB4 by Real-time PCR and immunocytochemistry. The expression of the Sirt3 gene was also assayed. Furthermore, intracellular reactive oxygen species (ROS) levels and the total antioxidant capacity (TAC) were examined by DCFH-DA fluorescence intensity and radical cation respectively. The number of cells in the inner cell mass (ICM) and outer cell mass (OCM) were elevated significantly in the Melatonin-treated group suggesting increased viability and proliferation. Furthermore, we found that melatonin significantly increased the expression levels of ErbB1, ErbB4, and Sirt3 genes, and the protein expression of ErbB1, ErbB4 correlated with intracellular ROS levels and TAC significantly increased after melatonin treatment. Together, these results demonstrate that melatonin could be helpful to improve preimplantation embryos through its effects in decreasing ROS levels and increasing expression of implantation-related genes.


Assuntos
Melatonina , Sirtuína 3 , Animais , Camundongos , Melatonina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Estresse Oxidativo , Blastocisto/metabolismo , Desenvolvimento Embrionário
9.
Neurotox Res ; 40(5): 1415-1426, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36053462

RESUMO

Intranasal mesenchymal stem cells (MSCs) delivery is a non-invasive method that has received interests for treatment of neurodegenerative diseases, such as multiple sclerosis (MS). The impact of intranasal MSCs on intermittent cuprizone model of demyelination was a focus of this study. C57/BL6 mice were fed with 0.3% cuprizone in an intermittent or single ways. Luxol fast blue (LFB), Rotarod test, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry and western blot (WB) were used for interpretation of outcomes. MSCs effectively homed to the corpus callosum area, were able to improve motor coordination and to promote myelin recovery in the intermittent cuprizone (INTRCPZ/MSCs). Astrogliosis (GFAP+ cells) and microgliosis (Iba-1+ cells) were hampered, and more mature oligodendrocyte cells (APC+ cells) were identified in mice receiving INTRCPZ/MSCs. Such treatment also considerably reduced markers related to the macrophage type 1 (M1) cells, namely iNOS and CD86, but it recovered the M2 markers MRC-1 and TREM-2. In addition, a remarkable decrease in the expressions of pro-inflammatory IL-1ß and TNFα but an increase in the rate of anti-inflammatory TGF-ß and IL-10 were identified in mice that underwent INTRCPZ/MSCs therapy. Finally, microvascular changes were evaluated, and a noticeable increase in the expression of the endothelial cell marker CD31 was found in the INTRCPZ/MSCs-treated mice (p < 0.05 for all). The outcomes are representative of the efficacy of intranasal MSCs delivery in intermittent cuprizone model of MS for reshaping macrophage polarity along with modification of glial, inflammatory, and angiogenic markers in favor of therapy.


Assuntos
Doenças Desmielinizantes , Células-Tronco Mesenquimais , Esclerose Múltipla , Animais , Corpo Caloso/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/terapia , Modelos Animais de Doenças , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Mol Neurobiol ; 59(12): 7278-7292, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36175823

RESUMO

Astrocytes display an active, dual, and controversial role in multiple sclerosis (MS), a chronic inflammatory demyelination disorder. However, mesenchymal stem cells (MSCs) can affect myelination in demyelinating disorders. This study aimed to investigate the effect of single and combination therapies of astrocyte ablation and MSC transplantation on remyelination in the cuprizone (CPZ) model of MS. C57BL/6 mice were fed 0.2% CPZ diet for 12 weeks. Astrocytes were ablated twice by L-a-aminoadipate (L-AAA) at the beginning of weeks 13 and 14 whereas MSCs were injected in the corpus callosum at the beginning of week 13. Motor coordination and balance were assessed through rotarod test whereas myelin content was evaluated by Luxol-fast blue (LFB) staining and transmission electron microscopy (TEM). Glial cells were assessed by immunofluorescence staining while mRNA expression was evaluated by quantitative real-time PCR. Combination treatment of ablation of astrocytes and MSC transplantation (CPZ + MSC + L-AAA) significantly decreased motor coordination deficits better than single treatments (CPZ + MSCs or CPZ + L-AAA), in comparison to CPZ mice. In addition, L-AAA and MSCs treatment significantly enhanced remyelination compared to CPZ group. Moreover, combination therapy caused a significant decrease in the number of GFAP+ and Iba-1+ cells, whereas oligodendrocytes were significantly increased in comparison to CPZ mice. Finally, MSC administration resulted in a significant upregulation of BDNF and NGF mRNA expression levels. Our data indicate that transient ablation of astrocytes along with MSCs treatment improve remyelination through enhancing oligodendrocytes and attenuating gliosis in a chronic demyelinating mouse model of MS.


Assuntos
Doenças Desmielinizantes , Transplante de Células-Tronco Mesenquimais , Esclerose Múltipla , Remielinização , Animais , Camundongos , Cuprizona/toxicidade , Astrócitos/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Modelos Animais de Doenças , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , RNA Mensageiro/metabolismo
11.
J Mol Histol ; 53(2): 333-346, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35031895

RESUMO

Multiple sclerosis (MS), which is an autoimmune disease, is characterized by symptoms such as demyelination, axonal damage, and astrogliosis. As the most abundant type of glial cells, astrocytes play an important role in MS pathogenesis. Mesenchymal stem cells (MSCs) are a subset of stromal cells that have the potential for migration, immune-modulation, differentiation, remyelination, and neuroregeneration. Therefore, the present study evaluates the effects of MSC transplantation on A1 reactive astrocytes and the remyelination process in the cuprizone mouse model. The study used 30 male C57BL/6 mice, which were randomly distributed into three subgroups (n = 10), i.e., control, cuprizone, and transplanted MSCs groups. In order to generate a chronic demyelination model, the mice in the cuprizone group received food mixed with 0.2% cuprizone powder for 12 weeks. Then, 2 µl of DMEM containing approximately 3 × 105 DiI labeled cells was injected with a 4-min interval into the right lateral ventricle using a 10-µl Hamilton syringe. After 2 weeks of cell transplantation, we used the rotarod test to evaluate the behavioral deficits, while the remyelination process was assessed by transmission electron microscopy (TEM) and Luxol Fast Blue (LFB) staining. We assessed the population of A1 astrocytes and oligodendrocytes using specific markers, such as C3, GFAP, and Olig2, using the immunefleurocent method. The pro-inflammatory and trophic factors were assessed by a real-time polymerase chain reaction. According to our data, the specific marker of A1 astrocytes (C3) decreased in the MSCs group, while the number of oligodendrocytes significantly increased in this group compared to the cuprizone mice. Additionally, MSC was able to enhance the remyelination process after cuprizone usage, as shown by LFB and TEM images. The molecular results showed that MSCs could reduce pro-inflammatory factors, such as IL-1 and TNF-α, through the secretion of BDNF and TGF-ß as trophic factors. The obtained results indicated that MSC could reduce demyelination and inflammation by decreasing A1 neurotoxic reactive astrocytes and neurotrophic and immunomodulatory factors secretion in the chronic cuprizone demyelination model.


Assuntos
Doenças Desmielinizantes , Células-Tronco Mesenquimais , Esclerose Múltipla , Animais , Astrócitos/patologia , Biomarcadores , Cuprizona , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/terapia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Oligodendroglia
12.
Neurotox Res ; 39(6): 1732-1746, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34570348

RESUMO

Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB). In this study, we indirectly investigated whether metformin therapy would regulate microglia activity in the cuprizone (CPZ)-induced demyelination mouse model of MS via measuring the markers associated with pro- and anti-inflammatory microglia. Evaluation of myelin by luxol fast blue staining revealed that metformin treatment (CPZ + Met) diminished demyelination, in comparison to CPZ mice. In addition, metformin therapy significantly alleviated reactive microgliosis and astrogliosis in the corpus callosum, as measured by Iba-1 and GFAP staining. Moreover, metformin treatment significantly downregulated the expression of pro-inflammatory associated genes (iNOS, H2-Aa, and TNF-α) in the corpus callosum, whereas expression of anti-inflammatory markers (Arg1, Mrc1, and IL10) was not promoted, compared to CPZ mice. Furthermore, protein levels of iNOS (pro-inflammatory marker) were significantly decreased in the metformin group, while those of Trem2 (anti-inflammatory marker) were increased. In addition, metformin significantly increased AMPK activation in CPZ mice. Finally, metformin administration significantly reduced the activation level of NF-κB in CPZ mice. In summary, our data revealed that metformin attenuated pro-inflammatory microglia markers through suppressing NF-κB activity. The positive effects of metformin on microglia and remyelination suggest that it could be used as a promising candidate to lessen the incidence of inflammatory neurodegenerative diseases such as MS.


Assuntos
Metformina/uso terapêutico , Microglia/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Western Blotting , Cuprizona/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Transcriptoma/efeitos dos fármacos
13.
J Chem Neuroanat ; 116: 102013, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391881

RESUMO

Multiple sclerosis (MS) is an immune-mediated demyelinating disorder in the central nervous system (CNS) with no definitive treatment, but it can be alleviated by changing life habits. Calorie restriction (CR) is effective in preventing or treating metabolic and autoimmune disorders. CR is one of the helpful approaches to control the progression of MS. In the present study, we investigated the preventive effect of caloric restriction on cuprizone induced-demyelination, a model of multiple sclerosis. To induce acute demyelination in C57/BL6 mice, we added 0.2% Cuprizone (CPZ) to their diet for 6 weeks. To induce calorie restriction, 10% Carboxymethyl cellulose (CMC) was added to the diet as a dietary cellulose fiber for 6 weeks. Remyelination was studied by luxol fast blue (LFB) staining. Microglia activity, M1 and M2 microglial/macrophage phenotypes were assessed by immunohistochemistry of Iba-1, iNOS and Arg-1, respectively. The expression of targeted genes was assessed by the real-time polymerase chain reaction. Luxol fast blue (LFB) staining showed that the CR regimen could decrease the cuprizone-induced demyelination process (p < 0.01). Moreover, the CR application could improve balance and motor performance in cuprizone-intoxicated mice by significantly enhancing protein and gene expression of Sirt1, M2 microglial phenotype marker (Arg-1) and Akt1 gene expression, also decreased M1 microglial phenotype marker (iNOS), Akt2 and P53 gene expressions (p < 0.05). Cumulatively, it can be concluded that caloric restriction was able to counteract MS symptoms through alleviating inflammatory responses.


Assuntos
Restrição Calórica/métodos , Cuprizona/toxicidade , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/prevenção & controle , Microglia/metabolismo , Fenótipo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Quelantes/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia
14.
Neuropeptides ; 89: 102179, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274854

RESUMO

Multiple sclerosis is a kind of autoimmune and demyelinating disease with pathological symptoms such as inflammation, myelin loss, astrocytosis, and microgliosis. The colony stimulating factor 1 receptor (CSF1R) is an essential factor for the microglial function, and PLX3397 (PLX) is its specific inhibitor. In this wstudy, we assessed the effect of different doses of PLX for microglial ablation on glial cell population and remyelination process. Sixty male C57BL/6 mice (8 weeks old) were divided into 6 groups. The animals were fed with 0.2% cuprizone diet for 12 weeks. For microglial ablation, PLX (290 mg/kg) was added to the animal food for 3, 7, 14 and 21 days. Glial cell population was measured using immunohistochemistry. The rate of remyelination was evaluated using electron microscopy and Luxol Fast Blue staining. The expression levels of all genes were assessed by qRT-PCR method. Data were analysed using GraphPad Prism and SPSS software. The results showed that the administration of different doses of PLX significantly reduced microglial cells (p ≤ .001). PLX administration also significantly increased oligodendrocytes population (p ≤ .001) and remyelination compared to the cuprizone mice, which was aligned with the results of LFB and TEM. Gene results showed that PLX treatment reduced CSF1R expression. According to the results, the administration of PLX for 21 days enhanced remyelination by increasing oligodendrocytes in the chronic demyelination model. These positive effects could be related to the reduction of microglia.


Assuntos
Aminopiridinas/farmacologia , Esclerose Múltipla/patologia , Bainha de Mielina/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Pirróis/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Remielinização/efeitos dos fármacos , Animais , Cuprizona , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Neuroglia/patologia
15.
Neuroscience ; 463: 116-127, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33794337

RESUMO

Estrogen produces a beneficial role in animal models of multiple sclerosis (MS). The effect of 17ß-estradiol therapy on microglia polarization and neuroinflammation in the corpus callosum of the cuprizone-induced demyelination model has not been elucidated. In this study, mice were given 0.2% cuprizone (CPZ) for 5 weeks to induce demyelination during which they received 50 ng of 17ß-estradiol (EST), injected subcutaneously in the neck region, twice weekly. Data revealed that treatment with 17ß-estradiol therapy (CPZ+EST) improved neurological behavioral deficits, displayed by a significant reduction in escape latencies, in comparison to untreated CPZ mice. Also, administration of 17ß-estradiol caused a decrease in demyelination levels and axonal injury, as demonstrated by staining with Luxol fast blue, immunofluorescence to myelin basic protein, and transmission electron microscopy analysis. In addition, at the transcriptional level in the brain, mice treated with 17ß-estradiol (CPZ+EST) showed a decrease in the levels of M1-assosicted microglia markers (CD86, iNOS and MHC-II) whereas M2-associated genes (Arg-1, CD206 and Trem-2) were increased, compared to CPZ mice. Moreover, administration of 17ß-estradiol resulted in a significant reduction (∼3-fold) in transcript levels of NLRP3 inflammasome and its downstream product IL-18, compared to controls. In summary, this study demonstrated for the first time that exogenous 17ß-estradiol therapy robustly leads to the reduction of M1 phenotype, stimulation of polarized M2 microglia, and repression of NLRP3 inflammasome in the corpus callosum of CPZ demyelination model of MS. The positive effects of 17ß-estradiol on microglia and inflammasome seems to facilitate and accelerate the remyelination process.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Corpo Caloso/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Estradiol/farmacologia , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR
16.
Cell Mol Neurobiol ; 41(7): 1467-1481, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594382

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The main causes of MS disease progression, demyelination, and tissue damage are oxidative stress and mitochondrial dysfunction. Hence, the latter are considered as important therapeutic targets. Recent studies have demonstrated that mesenchymal stem cells (MSCs) possess antioxidative properties and are able to target mitochondrial dysfunction. Therefore, we investigated the effect of transplanting Wharton's jelly-derived MSCs in a demyelination mouse model of MS in which mice were fed cuprizone (CPZ) for 12 weeks. CPZ is a copper chelator that impairs the activity of cytochrome oxidase, decreases oxidative phosphorylation, and produces degenerative changes in oligodendrocytes, leading to toxic demyelination similar to those found in MS patients. Results showed that MSCs caused a significant increase in the percentage of myelinated areas and in the number of myelinated fibers in the corpus callosum of the CPZ + MSC group, compared to the CPZ group, as assessed by Luxol fast blue staining and transmission electron microscopy. In addition, transplantation of MSCs significantly increased the number of oligodendrocytes while decreasing astrogliosis and microgliosis in the corpus callosum of the CPZ + MSC group, evaluated by immunofluorescence. Moreover, the mechanism by which MSCs exert these physiological effects was found to be through abolishing the effect of CPZ on oxidative stress markers and mitochondrial dysfunction. Indeed, malondialdehyde significantly decreased while glutathione and superoxide dismutase significantly increased in CPZ + MSC mice group, in comparison witth the CPZ group alone. Furthermore, cell therapy with MSC transplantation increased the expression levels of mitochondrial biogenesis transcripts PGC1α, NRF1, MFN2, and TFAM. In summary, these results demonstrate that MSCs may attenuate MS by promoting an antioxidant response, reducing oxidative stress, and improving mitochondrial homeostasis.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Animais , Cuprizona/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
17.
Metab Brain Dis ; 35(7): 1211-1224, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32638202

RESUMO

Over the past few decades several attempts have been made to introduce a potential and promising therapy for Multiple sclerosis (MS). Calorie restriction (CR) is a dietary manipulation to reduce calorie intake which has been shown to improve neuroprotection and attenuate neurodegenerative disorders. Here, we evaluated the effect of 33% CR regimen for 4 weeks on the remyelination capacity of Cuprizone (CPZ) induced demyelination in a mouse model of MS. Results showed that CR induced a significant increase in motor coordination and balance performance in CPZ mice. Also, luxol fast blue (LFB) staining showed that CR regimen significantly improved the remyelination in the corpus callosum of CPZ + CR mice compared to the CPZ group. In addition, CR regimen significantly increased the transcript expression levels of BDNF, Sox2, and Sirt1 in the corpus callosum of CPZ mice, while decreasing the p53 levels. Moreover, CR regimen significantly decreased the apoptosis rate. Furthermore, astrogliosis (GFAP + astrocytes) and microgliosis (Iba-1 + microglia) were significantly decreased by CR regimen while oligodendrogenesis (Olig2+) and Sirt1 + cell expression were significantly increased in the corpus callosum of CPZ + CR mice compared to the CPZ group. In conclusion, CR regimen can promote remyelination potential in a CPZ-demyelinating mouse model of MS by increasing oligodendrocyte generation while decreasing their apoptosis.


Assuntos
Encéfalo/fisiopatologia , Restrição Calórica , Doenças Desmielinizantes/induzido quimicamente , Esclerose Múltipla/induzido quimicamente , Remielinização/fisiologia , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Cuprizona , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Camundongos , Microglia/metabolismo , Destreza Motora/fisiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/metabolismo
18.
J Mol Histol ; 50(3): 263-271, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31016544

RESUMO

Oxidative stress with mitochondrial defects has a central role in the development and deterioration of Multiple sclerosis (MS). According to new findings of the effects of metformin on mitochondrial function, has attracted a lot of attention. Furthermore, it is suggested that metformin exerts its beneficial influence through AMP-activated protein kinase (AMPK) pathway. In the current study, we investigated the possible protective effects of metformin on oxidative stress and mitochondrial function by activating the AMPK pathway in the cuprizone-induced demyelination. Mice were fed with cuprizone for 6 weeks. Animals simultaneously received metformin. After sacrificing animals, myelinations, and gliosis, changes in transcription factor and biochemical analysis were assessed. Transmission electron microscopy and luxol fast blue staining revealed that the myelinated axons within corpus callosum of cuprizone-induced demyelination animals increased after administration of metformin. Metformin also upregulated the expression of mitochondrial biogenesis genes. Furthermore, the biochemical analysis demonstrated that metformin ameliorated the oxidative stress induced by cuprizone. Immunohistochemistry analysis showed that astrogliosis and microgliosis were decreased after metformin administration while it enhanced the number of oligodendrocytes. Our data implicated that metformin exerts its therapeutic effects on MS by AMPK signaling improved mitochondrial homeostasis and protected oligodendrocytes.


Assuntos
Metformina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Hemostasia/efeitos dos fármacos , Hemostasia/genética , Humanos , Camundongos , Mitocôndrias/genética , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
Neuropeptides ; 75: 75-84, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31030907

RESUMO

Mesenchymal stem cells (MSCs) have a notable potential to modulate immune responses and protect the central nervous system (CNS), mostly by secreting factors that affect inflammation. MSCs have the ability to improve several autoimmune diseases in animal models including multiple sclerosis (MS). MS is a disease of the CNS among adult humans and it is characterized by demyelination, neuroinflammation and gliosis. In this study, we first induced chronic demyelination by cuprizone, followed by intraventricular injection of MSC. Our results showed that MSC significantly decreased microgliosis and astrocytosis by secreting cytokines that have neuroprotective activity including TGF-ß and CX3CL1. Also, downregulation of IL-1ß and TNF-α as inflammatory chemokines was seen along with decreased astrocytes and microglia activation. Finally, these results showed that trophic factors secreted by MSC can increase oligodendrocyte population and remyelination rate by reducing pro-inflammatory factors. These findings demonstrate that MSC could decrease inflammation, gliosis and demyelination with neuroprotective and immunomodulating properties in chronic cuprizone demyelination model. Therefore MSC transplantation can be considered as a suitable approach for enhancing myelination and reducing inflammation in diseases such as MS.


Assuntos
Doenças Desmielinizantes/metabolismo , Células-Tronco Mesenquimais , Neuroglia/metabolismo , Animais , Quimiocina CX3CL1/metabolismo , Cuprizona , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Masculino , Camundongos , Fator de Crescimento Transformador beta/metabolismo
20.
J Cell Biochem ; 120(8): 12785-12795, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861185

RESUMO

Prenatal white matter injury is a serious problem due to maternal inflammation leading to postnatal disabilities. In this study, we used the periventricular leukomalacia (PVL) model as a common prenatal white matter injury by maternal administration of lipopolysaccharide (LPS). Neural stem cells (NSCs) have shown therapeutic ability in neurological disorders through a different mechanism such as immunomodulation. Here, we studied the preventive potential of NSCs following in utero transplantation into the embryonic lateral ventricle in an LPS-induced white matter injury model. Pregnant animals were divided into three groups and received phosphate buffered saline, LPS, or LPS + NSCs. The brains of offspring were obtained and evaluated by real-time polymerase chain reaction (PCR), immunohistochemy, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (TUNEL), and caspase-3 activity assay. The LPS-induced maternal inflammation degenerated the myelin sheath in the offspring periventricular region which was associated with an increased microglial number, oligodendrocytes degeneration, proinflammatory cytokine secretion, and cell apoptosis. The transplanted NSCs homed into the brain and ameliorated the evaluated parameters. The expression of proinflammatory cytokines interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α), cell apoptosis and caspase-3 activity were inhibited by NSCs. In addition, Olig2 and myelin basic protein immunohistochemy staining showed that prenatal NSCs transplantation augmented the myelination in the periventricular white matter of offspring. In conclusion, we think that prenatal therapeutic strategies, such as in utero NSCs transplantation, may prevent prenatal white matter injury after birth.


Assuntos
Lesões Encefálicas/terapia , Lipopolissacarídeos/efeitos adversos , Células-Tronco Neurais/transplante , Substância Branca/embriologia , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/imunologia , Caspase 3/genética , Caspase 3/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Injeções Intraventriculares , Células-Tronco Neurais/citologia , Gravidez , Ratos , Ratos Sprague-Dawley , Substância Branca/efeitos dos fármacos , Substância Branca/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...