Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293475

RESUMO

Primary focal segmental glomerulosclerosis (FSGS), along with minimal change disease (MCD), are diseases with primary podocyte damage that are clinically manifested by the nephrotic syndrome. The pathogenesis of these podocytopathies is still unknown, and therefore, the search for biomarkers of these diseases is ongoing. Our aim was to determine of the proteomic profile of urine from patients with FSGS and MCD. Patients with a confirmed diagnosis of FSGS (n = 30) and MCD (n = 9) were recruited for the study. For a comprehensive assessment of the severity of FSGS a special index was introduced, which was calculated as follows: the first score was assigned depending on the level of eGFR, the second score-depending on the proteinuria level, the third score-resistance to steroid therapy. Patients with the sum of these scores of less than 3 were included in group 1, with 3 or more-in group 2. The urinary proteome was analyzed using liquid chromatography/mass spectrometry. The proteome profiles of patients with severe progressive FSGS from group 2, mild FSGS from group 1 and MCD were compared. Results of the label free analysis were validated using targeted LC-MS based on multiple reaction monitoring (MRM) with stable isotope labelled peptide standards (SIS) available for 47 of the 76 proteins identified as differentiating between at least one pair of groups. Quantitative MRM SIS validation measurements for these 47 proteins revealed 22 proteins with significant differences between at least one of the two group pairs and 14 proteins were validated for both comparisons. In addition, all of the 22 proteins validated by MRM SIS analysis showed the same direction of change as at the discovery stage with label-free LC-MS analysis, i.e., up or down regulation in MCD and FSGS1 against FSGS2. Patients from the FSGS group 2 showed a significantly different profile from both FSGS group 1 and MCD. Among the 47 significantly differentiating proteins, the most significant were apolipoprotein A-IV, hemopexin, vitronectin, gelsolin, components of the complement system (C4b, factors B and I), retinol- and vitamin D-binding proteins. Patients with mild form of FSGS and MCD showed lower levels of Cystatin C, gelsolin and complement factor I.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Humanos , Nefrose Lipoide/diagnóstico , Nefrose Lipoide/metabolismo , Nefrose Lipoide/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Cistatina C/metabolismo , Proteômica , Gelsolina/metabolismo , Proteoma/metabolismo , Hemopexina/metabolismo , Vitronectina/metabolismo , Fator I do Complemento/metabolismo , Vitamina A/metabolismo , Biomarcadores , Esteroides , Vitamina D
2.
Front Physiol ; 12: 760875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867466

RESUMO

The study presents the results of evaluating the changes in the concentrations of blood plasma proteins associated with heart rate variability (HRV) in cosmonauts who have completed space missions lasting about 6months. The concentrations of 125 proteins were quantified in biological samples of the cosmonauts' blood plasma. The subgroups of proteins associated with the physiological processes of the HRV autonomic regulation were identified using bioinformatic resources (Immunoglobulin heavy constant mu, Complement C1q subcomponent subunit C, Plasma serine protease inhibitor, Protein-72kDa type IV collagenase, Fibulin-1, Immunoglobulin lambda constant 3). The concentration of these proteins in the blood plasma before the flight, and the dynamics of concentration changes on the 1st and 7th days of the post-flight rehabilitation period differed in the groups of cosmonauts with a predominance of sympathetic or parasympathetic modulating autonomous influences. The dynamics of changes in the concentrations of the identified set of proteins reveal that in cosmonauts with a predominance of sympathetic modulating influences, the mechanisms of autonomic regulation are exposed to significant stress in the recovery period immediately after the completion of the space mission, compared with the cosmonauts with a predominance of parasympathetic modulating influences.

5.
Front Physiol ; 11: 692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754043

RESUMO

The purpose of the study was to investigate the regulatory and metabolic changes in the circulatory system when simulating microgravity conditions in a five-day dry immersion. These changes reflect the adaptation processes characteristic for the initial stages of a space flight or a short-duration space flight. Studies were conducted with 13 healthy male volunteers aged 21 to 29 years. The assessment of regulatory and metabolic processes in the circulatory system was based on the heart rate variability (HRV) and urine proteomic profile analysis. It was found that the restructuring of hemodynamics during 5 days hypogravity begins with the inclusion of the nervous circuit of regulation, and for manifestations at the body fluids protein composition level and activation of the metabolic regulation, these periods are apparently insufficient. Perhaps this is due to the fact that the metabolic regulation, being evolutionarily ancient and genetically determined, is more stable and requires more time for its pronounced activation when stimulated by extreme life conditions.

6.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261866

RESUMO

The aim of the study was to compare proteomic data on the effects of spaceflight factors on the human body, including both real space missions and ground-based experiments. LC-MS/MS-based proteomic analysis of blood plasma samples obtained from 13 cosmonauts before and after long-duration (169-199 days) missions on the International Space Station (ISS) and for five healthy men included in 21-day-long head-down bed rest (HDBR) and dry immersion experiments were performed. The semi-quantitative label-free analysis revealed significantly changed proteins: 19 proteins were significantly different on the first (+1) day after landing with respect to background levels; 44 proteins significantly changed during HDBR and 31 changed in the dry immersion experiment. Comparative analysis revealed nine common proteins (A1BG, A2M, SERPINA1, SERPINA3, SERPING1, SERPINC1, HP, CFB, TF), which changed their levels after landing, as well as in both ground-based experiments. Common processes, such as platelet degranulation, hemostasis, post-translational protein phosphorylation and processes of protein metabolism, indicate common pathogenesis in ground experiments and during spaceflight. Dissimilarity in the lists of significantly changed proteins could be explained by the differences in the dynamics of effective development in the ground-based experiments. Data are available via ProteomeXchange using the identifier PXD013305.


Assuntos
Decúbito Inclinado com Rebaixamento da Cabeça/efeitos adversos , Proteoma/metabolismo , Voo Espacial , Adulto , Repouso em Cama/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/química , Serpinas/sangue , Simulação de Ausência de Peso
7.
BMC Med Genomics ; 12(Suppl 2): 45, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871558

RESUMO

BACKGROUND: The conditions of space flight have a significant effect on the physiological processes in the human body, yet the molecular mechanisms driving physiological changes remain unknown. METHODS: Blood samples of 18 Russian cosmonauts who had conducted long-duration missions to the International Space Station were collected 30 days before launch and on the first and seventh days after landing. RESULTS: A panel of 125 proteins in the blood plasma was quantitated by a well-established and highly regarded targeted mass spectrometry approach. This method involves the monitoring of multiple reactions in conjunction with stable isotope-labeled standards at the University of Victoria - Genome BC Proteomics Centre. CONCLUSIONS: Reduction of circulating plasma volume during space flight and activation of fluid retention at the final stage of the flight affect the changes in plasma protein concentrations present in the first days after landing. Using an ANOVA approach, it was revealed that only 1 protein (S100A9) reliably responded to space flight conditions. This protein plays an important role in the functioning of the endothelium and can serve as a marker for activation of inflammatory reactions. Concentrations of the proteins of complement, coagulation cascades, and acute phase reactants increase in the blood of cosmonauts as measured the first day after landing. Most of these proteins' concentrations continue to increase by the 7th day after space flight. Similar dynamics are observed for proteases and their inhibitors. Thus, there is a shift in proteolytic blood systems, which is necessary for the restoration of muscle tissue and maintenance of oncotic homeostasis.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteômica/métodos , Voo Espacial , Adulto , Proteínas Sanguíneas/genética , Calgranulina B/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Marcação por Isótopo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
8.
BMC Syst Biol ; 13(Suppl 1): 17, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836973

RESUMO

BACKGROUND: The strategy of adaptation of the human body in microgravity is largely associated with the plasticity of cardiovascular system regulatory mechanisms. During long-term space flights the changes in the stroke volume of the heart are observed, the heart rate decreases, the phase structure of cardiac cycle is readjusted The purpose of this work was to clarify urine proteome changes associated with the initial condition of the heart rate autonomic regulation mechanisms in cosmonauts who have participated in long space missions. Urine proteome of each cosmonaut was analyzed before and after space flight, depending on the initial parameters characterizing the regulatory mechanisms of the cardiovascular system. RESULTS: The proteins cadherin-13, mucin-1, alpha-1 of collagen subunit type VI (COL6A1), hemisentin-1, semenogelin-2, SH3 domain-binding protein, transthyretin and serine proteases inhibitors realize a homeostatic role in individuals with different initial type of the cardiovascular system regulation. The role of significantly changed urine proteins in the cardiovascular homeostasis maintenance is associated with complex processes of atherogenesis, neoangiogenesis, activation of calcium channels, changes in cell adhesion and transmembrane properties, changes in extracellular matrix, participation in protection from oxidative stress and leveling the effects of hypoxia. Therefore, the concentrations of these proteins significantly differ between groups with dominant parasympathetic and sympathetic influences. CONCLUSION: The space flight induced urine proteome changes are significantly different in the groups identified by heart rate autonomic regulation peculiarities before space flight. All these proteins regulate the associated biological processes which affect the stiffness of the vascular wall, blood pressure level, the severity of atherosclerotic changes, the rate and degree of age-related involution of elastin and fibulin, age-related increase in collagen stiffness, genetically determined features of elastin fibers. The increased vascular rigidity (including the aorta) and of myocardium may be regarded as a universal response to various extreme factors. Significant differences in the semi-quantitative analysis of signal proteins between groups with different types of autonomic regulation are explained by a common goal: to ensure optimal adaptation regardless of age and of the genetically determined type of responses to the extreme environmental factors effects.


Assuntos
Astronautas , Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca , Proteoma , Urinálise , Adaptação Fisiológica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
9.
Expert Rev Proteomics ; 14(1): 15-29, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27817217

RESUMO

INTRODUCTION: Spaceflight is one of the most extreme conditions encountered by humans: Individuals are exposed to radiation, microgravity, hypodynamia, and will experience isolation. A better understanding of the molecular processes induced by these factors may allow us to develop personalized countermeasures to minimize risks to astronauts. Areas covered: This review is a summary of literature searches from PubMed, NASA, Roskosmos and the authors' research experiences and opinions. The review covers the available proteomic data on the effects of spaceflight factors on the human body, including both real space missions and ground-based model experiments. Expert commentary: Overall, the authors believe that the present background, methodology and equipment improvements will enhance spaceflight safety and support accumulation of new knowledge on how organisms adapt to extreme conditions.


Assuntos
Proteoma/genética , Proteômica , Voo Espacial , Ausência de Peso/efeitos adversos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...