Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0232846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32380514

RESUMO

The structure of lactose permease, stabilized in a periplasmic open conformation by two Gly to Trp replacements (LacYww) and complexed with a nanobody directed against this conformation, provides the highest resolution structure of the symporter. The nanobody binds in a different manner than two other nanobodies made against the same mutant, which also bind to the same general region on the periplasmic side. This region of the protein may represent an immune hotspot. The CDR3 loop of the nanobody is held by hydrogen bonds in a conformation that partially blocks access to the substrate-binding site. As a result, kon and koff for galactoside binding to either LacY or the double mutant complexed with the nanobody are lower than for the other two LacY/nanobody complexes though the Kd values are similar, reflecting the fact that the nanobodies rigidify structures along the pathway. While the wild-type LacY/nanobody complex clearly stabilizes a similar 'extracellular open' conformation in solution, judged by binding kinetics, the complex with wild-type LacY did not yet crystallize, suggesting the nanobody does not bind strongly enough to shift the equilibrium to stabilize a periplasmic side-open conformation suitable for crystallization. However, the similarity of the galactoside binding kinetics for the nanobody-bound complexes with wild type LacY and with LacYWW indicates that they have similar structures, showing that the reported co-structures reliably show nanobody interactions with LacY.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Transporte de Monossacarídeos/química , Anticorpos de Domínio Único/química , Simportadores/química , Substituição de Aminoácidos , Reações Antígeno-Anticorpo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Galactose/metabolismo , Glicina/química , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/imunologia , Mutação de Sentido Incorreto , Mutação Puntual , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Anticorpos de Domínio Único/imunologia , Relação Estrutura-Atividade , Simportadores/genética , Simportadores/imunologia , Tiogalactosídeos/química , Triptofano/química
2.
Proc Natl Acad Sci U S A ; 115(50): 12716-12721, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478058

RESUMO

The lactose permease of Escherichia coli (LacY) utilizes an alternating access symport mechanism with multiple conformational intermediates, but only inward (cytoplasmic)- or outward (periplasmic)-open structures have been characterized by X-ray crystallography. It is demonstrated here with sugar-binding studies that cross-linking paired-Cys replacements across the closed cytoplasmic cavity stabilize an occluded conformer with an inaccessible sugar-binding site. In addition, a nanobody (Nb) that stabilizes a periplasmic-open conformer with an easily accessible sugar-binding site in WT LacY fails to cause the cytoplasmic cross-linked mutants to become accessible to galactoside, showing that the periplasmic cavity is closed. These results are consistent with tight association of the periplasmic ends in two pairs of helices containing clusters of small residues in the packing interface between N- and C-terminal six-helix bundles of the symporter. However, after reduction of the disulfide bond, the Nb markedly increases the rate of galactoside binding, indicating unrestricted access to the Nb epitope and the galactoside-binding site from the periplasm. The findings indicate that the cross-linked cytoplasmic double-Cys mutants resemble an occluded apo-intermediate in the transport cycle.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Simportadores/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Citoplasma/metabolismo , Escherichia coli/metabolismo , Galactosídeos/química , Galactosídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/metabolismo , Simportadores/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(35): 8769-8774, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30108145

RESUMO

The lactose permease of Escherichia coli (LacY), a dynamic polytopic membrane transport protein, catalyzes galactoside/H+ symport and operates by an alternating access mechanism that exhibits multiple conformations, the distribution of which is altered by sugar-binding. Camelid nanobodies were made against a double-mutant Gly46 → Trp/Gly262 → Trp (LacYWW) that produces an outward-open conformation, as opposed to the cytoplasmic open-state crystal structure of WT LacY. Nanobody 9047 (Nb9047) stabilizes WT LacY in a periplasmic-open conformation. Here, we describe the X-ray crystal structure of a complex between LacYWW, the high-affinity substrate analog 4-nitrophenyl-α-d-galactoside (NPG), and Nb9047 at 3-Å resolution. The present crystal structure demonstrates that Nb9047 binds to the periplasmic face of LacY, primarily to the C-terminal six-helical bundle, while a flexible loop of the Nb forms a bridge between the N- and C-terminal halves of LacY across the periplasmic vestibule. The bound Nb partially covers the vestibule, yet does not affect the on-rates or off-rates for the substrate binding to LacYWW, which implicates dynamic flexibility of the Nb-LacYWW complex. Nb9047-binding neither changes the overall structure of LacYWW with bound NPG, nor the positions of side chains comprising the galactoside-binding site. The current NPG-bound structure exhibits a more occluded periplasmic vestibule than seen in a previous structure of a (different Nb) apo-LacYWW/Nb9039 complex that we argue is caused by sugar-binding, with major differences located at the periplasmic ends of transmembrane helices in the N-terminal half of LacY.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Transporte de Monossacarídeos/química , Anticorpos de Domínio Único/química , Simportadores/química , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Estrutura Quaternária de Proteína , Simportadores/genética
4.
Proc Natl Acad Sci U S A ; 115(16): 4146-4151, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29602806

RESUMO

Binding kinetics of α-galactopyranoside homologs with fluorescent aglycones of different sizes and shapes were determined with the lactose permease (LacY) of Escherichia coli by FRET from Trp151 in the binding site of LacY to the fluorophores. Fast binding was observed with LacY stabilized in an outward-open conformation (kon = 4-20 µM-1·s-1), indicating unobstructed access to the binding site even for ligands that are much larger than lactose. Dissociation rate constants (koff) increase with the size of the aglycone so that Kd values also increase but remain in the micromolar range for each homolog. Phe27 (helix I) forms an apparent constriction in the pathway for sugar by protruding into the periplasmic cavity. However, replacement of Phe27 with a bulkier Trp does not create an obstacle in the pathway even for large ligands, since binding kinetics remain unchanged. High accessibility of the binding site is also observed in a LacY/nanobody complex with partially blocked periplasmic opening. Remarkably, E. coli expressing WT LacY catalyzes transport of α- or ß-galactopyranosides with oversized aglycones such as bodipy or Aldol518, which may require an extra space within the occluded intermediate. The results confirm that LacY specificity is strictly directed toward the galactopyranoside ring and also clearly indicate that the opening on the periplasmic side is sufficiently wide to accommodate the large galactoside derivatives tested here. We conclude that the actual pathway for the substrate entering from the periplasmic side is wider than the pore diameter calculated in the periplasmic-open X-ray structures.


Assuntos
Proteínas de Escherichia coli/metabolismo , Galactosídeos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Sítios de Ligação , Transporte Biológico Ativo , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Corantes Fluorescentes , Galactose/química , Galactose/metabolismo , Galactosídeos/química , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Proteínas de Transporte de Monossacarídeos/química , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Simportadores/química
5.
Biochemistry ; 56(13): 1943-1950, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28300394

RESUMO

Galactoside/H+ symport by the lactose permease of Escherichia coli (LacY) involves reciprocal opening and closing of periplasmic and cytoplasmic cavities so that sugar- and H+-binding sites become alternatively accessible to either side of the membrane. After reconstitution into proteoliposomes, LacY with the periplasmic cavity sealed by cross-linking paired-Cys residues does not bind sugar from the periplasmic side. However, reduction of the S-S bond restores opening of the periplasmic cavity and galactoside binding. Furthermore, nanobodies that stabilize the double-Cys mutant in a periplasmic-open conformation and allow free access of galactoside to the binding site do so only after reduction of the S-S bond. In contrast, when cross-linked LacY is solubilized in detergent, galactoside binding is observed, indicating that the cytoplasmic cavity is patent. Sugar binding from the cytoplasmic side exhibits nonlinear stopped-flow kinetics, and analysis reveals a two-step process in which a conformational change precedes binding. Because the cytoplasmic cavity is spontaneously closing and opening in the symporter with a sealed periplasmic cavity, it is apparent that an asymmetrical conformational transition controls access of sugar to the binding site.


Assuntos
Cisteína/química , Dissulfetos/química , Proteínas de Escherichia coli/química , Galactose/química , Proteínas de Transporte de Monossacarídeos/química , Proteolipídeos/química , Prótons , Simportadores/química , Sítios de Ligação , Transporte Biológico , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Galactose/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/metabolismo , Oxirredução , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteolipídeos/metabolismo , Simportadores/metabolismo , Termodinâmica
6.
Proc Natl Acad Sci U S A ; 113(44): 12420-12425, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791182

RESUMO

The lactose permease of Escherichia coli (LacY), a dynamic polytopic membrane protein, catalyzes galactoside-H+ symport and operates by an alternating access mechanism that exhibits multiple conformations, the distribution of which is altered by sugar binding. We have developed single-domain camelid nanobodies (Nbs) against a mutant in an outward (periplasmic)-open conformation to stabilize this state of the protein. Here we describe an X-ray crystal structure of a complex between a double-Trp mutant (Gly46→Trp/Gly262→Trp) and an Nb in which free access to the sugar-binding site from the periplasmic cavity is observed. The structure confirms biochemical data indicating that the Nb binds stoichiometrically with nanomolar affinity to the periplasmic face of LacY primarily to the C-terminal six-helix bundle. The structure is novel because the pathway to the sugar-binding site is constricted and the central cavity containing the galactoside-binding site is empty. Although Phe27 narrows the periplasmic cavity, sugar is freely accessible to the binding site. Remarkably, the side chains directly involved in binding galactosides remain in the same position in the absence or presence of bound sugar.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Transporte de Monossacarídeos/química , Periplasma/metabolismo , Conformação Proteica , Anticorpos de Domínio Único/química , Simportadores/química , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/imunologia , Mutação , Ligação Proteica , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Simportadores/genética , Simportadores/imunologia
7.
Proc Natl Acad Sci U S A ; 112(45): 13839-44, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26512108

RESUMO

The lactose permease of Escherichia coli (LacY), a highly dynamic membrane protein, catalyzes symport of a galactopyranoside and an H(+) by using an alternating access mechanism, and the transport cycle involves multiple conformational states. Single-domain camelid nanobodies (Nbs) developed against a LacY mutant immobilized in an outward (periplasmic)-open conformation bind to the flexible WT protein and stabilize the open-outward conformation(s). Here, we use site-directed, distance-dependent Trp quenching/unquenching of fluorescent probes inserted on opposite surfaces of LacY to assess the conformational states of the protein complexed with each of eight unique Nbs that bind exclusively to the periplasmic side and block transport, but increase the accessibility of the sugar-binding site. Nb binding involves conformational selection of LacY molecules with exposed binding epitopes. Each of eight Nbs induces quenching with three pairs of cytoplasmic Trp/fluorophore probes, indicating closing of cytoplasmic cavity. In reciprocal fashion, the same Nbs induce unquenching of fluorescence in three pairs of periplasmic probes due to opening of the periplasmic cavity. Because the extent of fluorescence change with various Nbs differs and the differences correlate with changes in the rate of sugar binding, it is also concluded that the Nbs stabilize several different outward-open conformations of LacY.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Transporte de Monossacarídeos/química , Anticorpos de Domínio Único/química , Simportadores/química , Conformação Proteica
8.
Proc Natl Acad Sci U S A ; 111(52): 18548-53, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512549

RESUMO

The lactose permease of Escherichia coli (LacY), a highly dynamic polytopic membrane protein, catalyzes stoichiometric galactoside/H(+) symport by an alternating access mechanism and exhibits multiple conformations, the distribution of which is altered by sugar binding. We have developed single-domain camelid nanobodies (Nbs) against a LacY mutant in an outward (periplasmic)-open conformation to stabilize this state of the WT protein. Twelve purified Nbs inhibit lactose transport in right-side-out membrane vesicles, indicating that the Nbs recognize epitopes on the periplasmic side of LacY. Stopped-flow kinetics of sugar binding by WT LacY in detergent micelles or reconstituted into proteoliposomes reveals dramatic increases in galactoside-binding rates induced by interaction with the Nbs. Thus, WT LacY in complex with the great majority of the Nbs exhibits varied increases in access of sugar to the binding site with an increase in association rate constants (kon) of up to ∼ 50-fold (reaching 10(7) M(-1) ⋅ s(-1)). In contrast, with the double-Trp mutant, which is already open on the periplasmic side, the Nbs have little effect. The findings are clearly consistent with stabilization of WT conformers with an open periplasmic cavity. Remarkably, some Nbs drastically decrease the rate of dissociation of bound sugar leading to increased affinity (greater than 200-fold for lactose).


Assuntos
Transporte Biológico Ativo/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Complexos Multiproteicos/metabolismo , Periplasma/metabolismo , Simportadores/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lactose/química , Lactose/genética , Lactose/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Periplasma/química , Periplasma/genética , Ligação Proteica , Estabilidade Proteica , Simportadores/química , Simportadores/genética
9.
Proc Natl Acad Sci U S A ; 111(23): 8440-5, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24872451

RESUMO

Galactoside/H(+) symport across the cytoplasmic membrane of Escherichia coli is catalyzed by lactose permease (LacY), which uses an alternating access mechanism with opening and closing of deep cavities on the periplasmic and cytoplasmic sides. In this study, conformational changes in LacY initiated by galactoside binding were monitored in real time by Trp quenching/unquenching of bimane, a small fluorophore covalently attached to the protein. Rates of change in bimane fluorescence on either side of LacY were measured by stopped flow with LacY in detergent or in proteoliposomes and were compared with rates of galactoside binding. With LacY in proteoliposomes, the periplasmic cavity is tightly sealed and the substrate-binding rate is limited by the rate of opening of this cavity. Rates of opening, measured as unquenching of bimane fluorescence, are 20-30 s(-1), independent of sugar concentration and essentially the same in detergent or in proteoliposomes. On the cytoplasmic side of LacY in proteoliposomes, slow bimane quenching (i.e., closing of the cavity) is observed at a rate that is also independent of sugar concentration and similar to the rate of sugar binding from the periplasmic side. Therefore, opening of the periplasmic cavity not only limits access of sugar to the binding site of LacY but also controls the rate of closing of the cytoplasmic cavity.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Galactosídeos/metabolismo , Cinética , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica , Proteolipídeos/metabolismo , Simportadores/química , Simportadores/genética , Fatores de Tempo
10.
Proc Natl Acad Sci U S A ; 111(5): 1784-8, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24453216

RESUMO

Here we describe the X-ray crystal structure of a double-Trp mutant (Gly46→Trp/Gly262→Trp) of the lactose permease of Escherichia coli (LacY) with a bound, high-affinity lactose analog. Although thought to be arrested in an open-outward conformation, the structure is almost occluded and is partially open to the periplasmic side; the cytoplasmic side is tightly sealed. Surprisingly, the opening on the periplasmic side is sufficiently narrow that sugar cannot get in or out of the binding site. Clearly defined density for a bound sugar is observed at the apex of the almost occluded cavity in the middle of the protein, and the side chains shown to ligate the galactopyranoside strongly confirm more than two decades of biochemical and spectroscopic findings. Comparison of the current structure with a previous structure of LacY with a covalently bound inactivator suggests that the galactopyranoside must be fully ligated to induce an occluded conformation. We conclude that protonated LacY binds D-galactopyranosides specifically, inducing an occluded state that can open to either side of the membrane.


Assuntos
Metabolismo dos Carboidratos , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Aminoácidos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Isopropiltiogalactosídeo/química , Isopropiltiogalactosídeo/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Especificidade por Substrato
11.
Proc Natl Acad Sci U S A ; 110(22): 8876-81, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671103

RESUMO

Trp replacements for conserved Gly-Gly pairs between the N- and C-terminal six-helix bundles on the periplasmic side of lactose permease (LacY) cause complete loss of transport activity with little or no effect on sugar binding. Moreover, the detergent-solubilized mutants exhibit much greater thermal stability than WT LacY. A Cys replacement for Asn245, which is inaccessible/unreactive in WT LacY, alkylates readily in the Gly→Trp mutants, indicating that the periplasmic cavity is patent. Stopped-flow kinetic measurements of sugar binding with the Gly→Trp mutants in detergent reveal linear dependence of binding rates on sugar concentration, as observed with WT or the C154G mutant of LacY, and are compatible with free access to the sugar-binding site in the middle of the molecule. Remarkably, after reconstitution of the Gly→Trp mutants into proteoliposomes, the concentration dependence of sugar-binding rates increases sharply with even faster rates than measured in detergent. Such behavior is strikingly different from that observed for reconstituted WT LacY, in which sugar-binding rates are independent of sugar concentration because opening of the periplasmic cavity is limiting for sugar binding. The observations clearly indicate that Gly→Trp replacements, which introduce bulky residues into tight Gly-Gly interdomain interactions on the periplasmic side of LacY, prevent closure of the periplasmic cavity and, as a result, shift the distribution of LacY toward an outward-open conformation.


Assuntos
Escherichia coli/enzimologia , Glicina/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Conformação Proteica , Triptofano/química , Transporte Biológico Ativo/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Oligonucleotídeos/genética , Proteolipídeos/metabolismo , Espectrometria de Fluorescência
12.
Proc Natl Acad Sci U S A ; 109(42): 16835-40, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23033496

RESUMO

WT lactose permease of Escherichia coli (LacY) reconstituted into proteoliposomes loaded with a pH-sensitive fluorophore exhibits robust uphill H(+) translocation coupled with downhill lactose transport. However, galactoside binding by mutants defective in lactose-induced H(+) translocation is not accompanied by release of an H(+) on the interior of the proteoliposomes. Because the pK(a) value for galactoside binding is ∼10.5, protonation of LacY likely precedes sugar binding at physiological pH. Consistently, purified WT LacY, as well as the mutants, binds substrate at pH 7.5-8.5 in detergent, but no change in ambient pH is observed, demonstrating directly that LacY already is protonated when sugar binds. However, a kinetic isotope effect (KIE) on the rate of binding is observed, indicating that deuterium substitution for protium affects an H(+) transfer reaction within LacY that is associated with sugar binding. At neutral pH or pD, both the rate of sugar dissociation (k(off)) and the forward rate (k(on)) are slower in D(2)O than in H(2)O (KIE is ∼2), and, as a result, no change in affinity (K(d)) is observed. Alkaline conditions enhance the effect of D(2)O on k(off), the KIE increases to 3.6-4.0, and affinity for sugar increases compared with H(2)O. In contrast, LacY mutants that exhibit pH-independent high-affinity binding up to pH 11.0 (e.g., Glu325 → Gln) exhibit the same KIE (1.5-1.8) at neutral or alkaline pH (pD). Proton inventory studies exhibit a linear relationship between k(off) and D(2)O concentration at neutral and alkaline pH, indicating that internal transfer of a single H(+) is involved in the KIE.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Galactosidases/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Prótons , Simportadores/metabolismo , Deutério , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Galactosidases/química , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Mutação/genética , Ligação Proteica , Simportadores/química , Simportadores/genética
13.
Biochemistry ; 50(51): 11009-14, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22106930

RESUMO

The sucrose permease (CscB) and lactose permease (LacY) of Escherichia coli belong to the oligosaccharide/H(+) symporter subfamily of the major facilitator superfamily, and both catalyze sugar/H(+) symport across the cytoplasmic membrane. Thus far, there is no common substrate for the two permeases; CscB transports sucrose, and LacY is highly specific for galactopyranosides. Determinants for CscB sugar specificity are unclear, but the structural organization of key residues involved in sugar binding appears to be similar in CscB and LacY. In this study, several sugars containing galactopyranosyl, glucopyranosyl, or fructofuranosyl moieties were tested for transport with cells overexpressing either CscB or LacY. CscB recognizes not only sucrose but also fructose and lactulose, but glucopyranosides are not transported and do not inhibit sucrose transport. The findings indicate that CscB exhibits practically no specificity with respect to the glucopyranosyl moiety of sucrose. Inhibition of sucrose transport by CscB tested with various fructofuranosides suggests that the C(3)-OH group of the fructofuranosyl ring may be important for recognition by CscB. Lactulose is readily transported by LacY, where specificity is directed toward the galactopyranosyl ring, and the affinity of LacY for lactulose is similar to that observed for lactose. The studies demonstrate that the substrate specificity of CscB is directed toward the fructofuranosyl moiety of the substrate, while the specificity of LacY is directed toward the galactopyranosyl moiety.


Assuntos
Dissacarídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicosídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Alquilação/efeitos dos fármacos , Naftalenossulfonato de Anilina/farmacologia , Sítios de Ligação/efeitos dos fármacos , Ligação Competitiva , Transporte Biológico/efeitos dos fármacos , Cisteína/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Frutose/análogos & derivados , Frutose/metabolismo , Galactosídeos/metabolismo , Glucosídeos/metabolismo , Cinética , Lactulose/análogos & derivados , Lactulose/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Conformação Molecular , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reagentes de Sulfidrila/farmacologia , Simportadores/antagonistas & inibidores , Simportadores/química , Simportadores/genética
14.
Biochemistry ; 50(45): 9684-93, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21995338

RESUMO

Crystal structures of the lactose permease of Escherichia coli (LacY) reveal 12, mostly irregular transmembrane α-helices surrounding a large cavity open to the cytoplasm and a tightly sealed periplasmic side (inward-facing conformation) with the sugar-binding site at the apex of the cavity and inaccessible from the periplasm. However, LacY is highly dynamic, and binding of a galactopyranoside causes closing of the inward-facing cavity with opening of a complementary outward-facing cavity. Therefore, the coupled, electrogenic translocation of a sugar and a proton across the cytoplasmic membrane via LacY very likely involves a global conformational change that allows alternating access of sugar- and H(+)-binding sites to either side of the membrane. Here the various biochemical and biophysical approaches that provide strong support for the alternating access mechanism are reviewed. Evidence is also presented indicating that opening of the periplasmic cavity is probably the limiting step for binding and perhaps transport.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/química , Simportadores/metabolismo , Alquilação , Sítios de Ligação , Reagentes de Ligações Cruzadas , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Galactosídeos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas de Transporte de Monossacarídeos/genética , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Eletricidade Estática , Simportadores/genética , Triptofano/química
15.
Proc Natl Acad Sci U S A ; 108(37): 15147-51, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21896727

RESUMO

The lactose permease (LacY) catalyzes galactoside/H(+) symport via an alternating access mechanism in which sugar- and H(+)-binding sites in the middle of the molecule are alternatively exposed to either side of the membrane by opening and closing of inward- and outward-facing cavities. The crystal structures of wild-type LacY, as well as accessibility data for the protein in the membrane, provide strong support for a conformation with a tightly closed periplasmic side and an open cytoplasmic side (an inward-facing conformation). In this study, rates of substrate binding were measured by stopped-flow with purified LacY either in detergent or in reconstituted proteoliposomes. Binding rates are compared with rates of sugar-induced opening of the periplasmic pathway obtained by using a recently developed method based on unquenching of Trp fluorescence. A linear dependence of galactoside-binding rates on sugar concentration is observed in detergent, whereas reconstituted LacY binds substrate at a slower rate that is independent of sugar concentration. Rates of opening of the periplasmic cavity with LacY in detergent are independent of substrate concentration and are essentially the same for different galactosidic sugars. The findings demonstrate clearly that reconstituted LacY is oriented physiologically with a closed periplasmic side that limits access of sugar to the binding site. Moreover, opening of the periplasmic cavity is the limiting factor for sugar binding with reconstituted LacY and may be the limiting step in the overall transport reaction.


Assuntos
Metabolismo dos Carboidratos , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Periplasma/metabolismo , Simportadores/metabolismo , Proteínas de Escherichia coli/química , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte de Monossacarídeos/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Nitrofenilgalactosídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Simportadores/química
16.
J Membr Biol ; 239(1-2): 85-93, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21161516

RESUMO

Lactose permease of Escherichia coli (LacY) is highly dynamic, and sugar binding causes closing of a large inward-facing cavity with opening of a wide outward-facing hydrophilic cavity. Therefore, lactose/H(+) symport via LacY very likely involves a global conformational change that allows alternating access of single sugar- and H(+)-binding sites to either side of the membrane. Here, in honor of Stephan H. White's seventieth birthday, we review in camera the various biochemical/biophysical approaches that provide experimental evidence for the alternating access mechanism.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Alquilação , Cisteína/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/química , Conformação Proteica , Simportadores/química , Triptofano/química
17.
Proc Natl Acad Sci U S A ; 106(51): 21561-6, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19959662

RESUMO

Sugar/H(+) symport by lactose permease (LacY) utilizes an alternating access mechanism in which sugar and H(+) binding sites in the middle of the molecule are alternatively exposed to either side of the membrane by sequential opening and closing of inward- and outward-facing hydrophilic cavities. Here, we introduce Trp residues on either side of LacY where they are predicted to be in close proximity to side chains of natural Trp quenchers in either the inward- or outward-facing conformers. In the inward-facing conformer, LacY is tightly packed on the periplasmic side, and Trp residues placed at positions 245 (helix VII) or 378 (helix XII) are in close contact with His-35 (helix I) or Lys-42 (helix II), respectively. Sugar binding leads to unquenching of Trp fluorescence in both mutants, a finding clearly consistent with opening of the periplasmic cavity. The pH dependence of Trp-245 unquenching exhibits a pK(a) of 8, typical for a His side chain interacting with an aromatic group. As estimated from stopped-flow studies, the rate of sugar-induced opening is approximately 100 s(-1). On the cytoplasmic side, Phe-140 (helix V) and Phe-334 (helix X) are located on opposite sides of a wide-open hydrophilic cavity. In precisely the opposite fashion from the periplasmic side, mutant Phe-140-->Trp/Phe-334-->His exhibits sugar-induced Trp quenching. Again, quenching is pH dependent (pK(a) = 8), but remarkably, the rate of sugar-induced quenching is only approximately 0.4 s(-1). The results provide yet another strong, independent line of evidence for the alternating access mechanism and demonstrate that the methodology described provides a sensitive probe to measure rates of conformational change in membrane transport proteins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Triptofano/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/química , Histidina/metabolismo , Cinética , Sondas Moleculares , Proteínas de Transporte de Monossacarídeos/química , Periplasma/metabolismo , Conformação Proteica , Espectrometria de Fluorescência , Sacarose/metabolismo , Simportadores/química
18.
Biochemistry ; 48(37): 8852-60, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19689129

RESUMO

A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (K(d)(app)) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low K(d)(app)) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates k(off) as a major factor for the affinity change at alkaline pH and confirms the effects of pH on K(d)(app) inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lactose/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Prótons , Simportadores/química , Simportadores/metabolismo , Substituição de Aminoácidos/genética , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Proteínas de Transporte de Monossacarídeos/genética , Oniocompostos/metabolismo , Ligação Proteica , Transporte Proteico , Especificidade por Substrato , Simportadores/genética
19.
Proc Natl Acad Sci U S A ; 105(26): 8896-901, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18567672

RESUMO

The effect of bulk-phase pH on the apparent affinity (K(d)(app)) of purified wild-type lactose permease (LacY) for sugars was studied. K(d)(app) values were determined by ligand-induced changes in the fluorescence of either of two covalently bound fluorescent reporters positioned away from the sugar-binding site. K(d)(app) for three different galactopyranosides was determined over a pH range from 5.5 to 11. A remarkably high pK(a) of approximately 10.5 was obtained for all sugars. Kinetic data for thiodigalactoside binding measured from pH 6 to 10 show that decreased affinity for sugar at alkaline pH is due specifically to increased reverse rate. A similar effect was also observed with nitrophenylgalactoside by using a direct binding assay. Because affinity for sugar remains constant from pH 5.5 to pH 9.0, it follows that LacY is fully protonated with respect to sugar binding under physiological conditions of pH. The results are consistent with the conclusion that LacY is protonated before sugar binding during lactose/H(+) symport in either direction across the membrane.


Assuntos
Metabolismo dos Carboidratos , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Prótons , Naftalenossulfonato de Anilina , Transporte Biológico , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Lactose/metabolismo , Maleimidas , Melibiose/metabolismo , Proteínas de Membrana Transportadoras/química , Nitrofenilgalactosídeos/metabolismo , Estrutura Secundária de Proteína , Tiogalactosídeos/metabolismo
20.
Proc Natl Acad Sci U S A ; 104(42): 16504-9, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17925435

RESUMO

According to x-ray structure, the lactose permease (LacY) is a monomer organized into N- and C-terminal six-helix bundles that form a deep internal cavity open on the cytoplasmic side with a single sugar-binding site at the apex. The periplasmic side of the molecule is closed. During sugar/H(+) symport, a cavity facing the periplasmic side is thought to open with closure of the inward-facing cytoplasmic cavity so that the sugar-binding site is alternately accessible to either face of the membrane. Double electron-electron resonance (DEER) is used here to measure interhelical distance changes induced by sugar binding to LacY. Nitroxide-labeled paired-Cys replacements were constructed at the ends of transmembrane helices on the cytoplasmic or periplasmic sides of wild-type LacY and in the conformationally restricted mutant Cys-154-->Gly. Distances were then determined in the presence of galactosidic or nongalactosidic sugars. Strikingly, specific binding causes conformational rearrangement on both sides of the molecule. On the cytoplasmic side, each of six nitroxide-labeled pairs exhibits decreased interspin distances ranging from 4 to 21 A. Conversely, on the periplasmic side, each of three spin-labeled pairs shows increased distances ranging from 4 to 14 A. Thus, the inward-facing cytoplasmic cavity closes, and a cleft opens on the tightly packed periplasmic side. In the Cys-154-->Gly mutant, sugar-induced closing is observed on the cytoplasmic face, but little or no change occurs on periplasmic side. The DEER measurements in conjunction with molecular modeling based on the x-ray structure provide strong support for the alternative access model and reveal a structure for the outward-facing conformer of LacY.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Escherichia coli/química , Proteínas de Transporte de Monossacarídeos/química , Simportadores/química , Substituição de Aminoácidos , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Citoplasma/química , Proteínas de Escherichia coli/genética , Glicina/química , Glicina/genética , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Periplasma/química , Conformação Proteica , Simportadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...