Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208130

RESUMO

BACKGROUND: Although immune checkpoint inhibitors have been a breakthrough in clinical oncology, these therapies fail to produce durable responses in a significant fraction of patients. This lack of long-term efficacy may be due to a poor pre-existing network linking innate and adaptive immunity. Here, we present an antisense oligonucleotide (ASO)-based strategy that dually targets toll-like receptor 9 (TLR9) and programmed cell death ligand 1 (PD-L1), aiming to overcome resistance to anti-PD-L1 monoclonal therapy. METHODS: We designed a high-affinity immunomodulatory IM-TLR9:PD-L1-ASO antisense oligonucleotide (hereafter, IM-T9P1-ASO) targeting mouse PD-L1 messenger RNA and activating TLR9. Then, we performed in vitro and in vivo studies to validate the IM-T9P1-ASO activity, efficacy, and biological effects in tumors and draining lymph nodes. We also performed intravital imaging to study IM-T9P1-ASO pharmacokinetics in the tumor. RESULTS: IM-T9P1-ASO therapy, unlike PD-L1 antibody therapy, results in durable antitumor responses in multiple mouse cancer models. Mechanistically, IM-T9P1-ASO activates a state of tumor-associated dendritic cells (DCs), referred to here as DC3s, which have potent antitumor potential but express the PD-L1 checkpoint. IM-T9P1-ASO has two roles: it triggers the expansion of DC3s by engaging with TLR9 and downregulates PD-L1, thereby unleashing the antitumor functions of DC3s. This dual action leads to tumor rejection by T cells. The antitumor efficacy of IM-T9P1-ASO depends on the antitumor cytokine interleukin-12 (IL-12), produced by DC3s, and Batf3, a transcription factor required for DC development. CONCLUSIONS: By simultaneously targeting TLR9 and PD-L1, IM-T9P1-ASO amplifies antitumor responses via DC activation, leading to sustained therapeutic efficacy in mice. By highlighting differences and similarities between mouse and human DCs, this study could serve to develop similar therapeutic strategies for patients with cancer.


Assuntos
Neoplasias , Receptor Toll-Like 9 , Humanos , Camundongos , Animais , Receptor Toll-Like 9/metabolismo , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Oligonucleotídeos Antissenso , Células Dendríticas
2.
Sci Transl Med ; 14(669): eabj1270, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322632

RESUMO

Immune checkpoint blockade (ICB) has substantially improved the prognosis of patients with cancer, but the majority experiences limited benefit, supporting the need for new therapeutic approaches. Up-regulation of sialic acid-containing glycans, termed hypersialylation, is a common feature of cancer-associated glycosylation, driving disease progression and immune escape through the engagement of Siglec receptors on tumor-infiltrating immune cells. Here, we show that tumor sialylation correlates with distinct immune states and reduced survival in human cancers. The targeted removal of Siglec ligands in the tumor microenvironment, using an antibody-sialidase conjugate, enhanced antitumor immunity and halted tumor progression in several murine models. Using single-cell RNA sequencing, we revealed that desialylation repolarized tumor-associated macrophages (TAMs). We also identified Siglec-E as the main receptor for hypersialylation on TAMs. Last, we found that genetic and therapeutic desialylation, as well as loss of Siglec-E, enhanced the efficacy of ICB. Thus, therapeutic desialylation represents an immunotherapeutic approach to reshape macrophage phenotypes and augment the adaptive antitumor immune response.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Camundongos , Animais , Glicosilação , Macrófagos Associados a Tumor , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
3.
Sci Transl Med ; 14(653): eabm9043, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857639

RESUMO

T cell-directed cancer immunotherapy often fails to generate lasting tumor control. Harnessing additional effectors of the immune response against tumors may strengthen the clinical benefit of immunotherapies. Here, we demonstrate that therapeutic targeting of the interferon-γ (IFN-γ)-interleukin-12 (IL-12) pathway relies on the ability of a population of natural killer (NK) cells with tissue-resident traits to orchestrate an antitumor microenvironment. In particular, we used an engineered adenoviral platform as a tool for intratumoral IL-12 immunotherapy (AdV5-IL-12) to generate adaptive antitumor immunity. Mechanistically, we demonstrate that AdV5-IL-12 is capable of inducing the expression of CC-chemokine ligand 5 (CCL5) in CD49a+ NK cells both in tumor mouse models and tumor specimens from patients with cancer. AdV5-IL-12 imposed CCL5-induced type I conventional dendritic cell (cDC1) infiltration and thus increased DC-CD8 T cell interactions. A similar observation was made for other IFN-γ-inducing therapies such as Programmed cell death 1 (PD-1) blockade. Conversely, failure to respond to IL-12 and PD-1 blockade in tumor models with low CD49a+ CXCR6+ NK cell infiltration could be overcome by intratumoral delivery of CCL5. Thus, therapeutic efficacy depends on the abundance of NK cells with tissue-resident traits and, specifically, their capacity to produce the DC chemoattractant CCL5. Our findings reveal a barrier for T cell-focused therapies and offer mechanistic insights into how T cell-NK cell-DC cross-talk can be enhanced to promote antitumor immunity and overcome resistance.


Assuntos
Integrina alfa1 , Neoplasias , Animais , Células Dendríticas , Imunoterapia , Integrina alfa1/metabolismo , Interleucina-12/metabolismo , Células Matadoras Naturais , Camundongos , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
4.
Front Oncol ; 11: 644608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747968

RESUMO

Reprogramming tumor infiltrating myeloid cells to elicit pro-inflammatory responses is an exciting therapeutic maneouver to improve anti-tumor responses. We recently demonstrated that a distinct microtubule-targeting drug, plinabulin-a clinical-stage novel agent-modulates dendritic cell maturation and enhances anti-tumor immunity. Here, we investigated the effects of plinabulin on macrophage polarization in vitro and in vivo. Plinabulin monotherapy induced significant tumor growth inhibition in mice bearing subcutaneous MC38 colon cancer. Importantly, the regressing tumors were characterized by an increase in M1-like/M2-like tumor-associated macrophages (TAM) ratio. The efficacy of plinabulin remained unaltered in T cell-deficient Rag2-/- mice, suggesting an important role of macrophages in driving the drug's anti-tumor effect. Exposure of murine and healthy human macrophages to plinabulin induced polarization toward the M1 phenotype, including increased expression of co-stimulatory molecules CD80, CD86 and pro-inflammatory cytokines IL-1ß, IL-6, and IL-12. M2-associated immunosuppressive cytokines IL-10 and IL-4 were reduced. This pro-inflammatory M1-like skewing of TAMs in response to plinabulin was dependent on the JNK pathway. Functionally, plinabulin-polarized human M1 macrophages directly killed HuT 78 tumor cells in vitro. Importantly, plinabulin induced a functional M1-like polarization of tumor infiltrating macrophages in murine tumors as well as in tumor samples from ovarian cancer patients, by preferentially triggering M1 proliferation. Our study uncovers a novel immunomodulatory effect of plinabulin in directly triggering M1 polarization and proliferation as well as promoting TAM anti-tumoral effector functions.

5.
J Immunother Cancer ; 8(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32616554

RESUMO

BACKGROUND: The costimulatory receptor 4-1BB (CD137, TNFRSF9) plays an important role in sustaining effective T cell immune responses and is investigated as target for cancer therapy. Systemic 4-1BB directed therapies elicit toxicity or low efficacy, which significantly hampered advancement of 4-1BB-based immunotherapy. Therefore, targeted delivery of 4-1BB agonist to the tumor side is needed for eliciting antitumor efficacy while avoiding systemic toxicity. METHODS: We analyzed the immunostimulatory properties of a fibroblast activation protein (FAP)-targeted 4-1BB agonist (FAP-4-1BBL) by assessing tumor-infiltrating lymphocytes' (TIL) activity from patients with non-small cell lung cancer and epithelial ovarian cancer. RESULTS: Combination treatment with FAP-4-1BBL and T cell receptor stimulation by either anti-CD3 or T cell bispecific antibodies significantly enhanced TIL activation and effector functions, including T cell proliferation, secretion of proinflammatory cytokines and cytotoxicity. Notably, costimulation with FAP-4-1BBL led to de novo secretion of interleukin (IL)-13. This was associated with cytokine-mediated tumor cell apoptosis, which was partially dependent on IL-13 alpha 1/2 receptors and STAT6 phosphorylation. CONCLUSIONS: Our study provides mechanistic insights into T cell stimulation induced by FAP-4-1BBL in primary human tumors and supports the investigation of FAP-4-1BBL compound in early clinical trials.


Assuntos
Ligante 4-1BB/metabolismo , Fibroblastos/imunologia , Imunoterapia/métodos , Neoplasias/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Idoso , Humanos , Neoplasias/patologia , Transfecção
6.
Proc Natl Acad Sci U S A ; 117(1): 541-551, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31889004

RESUMO

Cancer immunotherapies are increasingly combined with targeted therapies to improve therapeutic outcomes. We show that combination of agonistic anti-CD40 with antiangiogenic antibodies targeting 2 proangiogenic factors, vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (Ang2/ANGPT2), induces pleiotropic immune mechanisms that facilitate tumor rejection in several tumor models. On the one hand, VEGFA/Ang2 blockade induced regression of the tumor microvasculature while decreasing the proportion of nonperfused vessels and reducing leakiness of the remaining vessels. On the other hand, both anti-VEGFA/Ang2 and anti-CD40 independently promoted proinflammatory macrophage skewing and increased dendritic cell activation in the tumor microenvironment, which were further amplified upon combination of the 2 treatments. Finally, combined therapy provoked brisk infiltration and intratumoral redistribution of cytotoxic CD8+ T cells in the tumors, which was mainly driven by Ang2 blockade. Overall, these nonredundant synergistic mechanisms endowed T cells with improved effector functions that were conducive to more efficient tumor control, underscoring the therapeutic potential of antiangiogenic immunotherapy in cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígenos CD40/agonistas , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígenos CD40/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Cell Rep ; 28(13): 3367-3380.e8, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553907

RESUMO

Dendritic cell (DC) activation is a critical step for anti-tumor T cell responses. Certain chemotherapeutics can influence DC function. Here we demonstrate that chemotherapy capable of microtubule destabilization has direct effects on DC function; namely, it induces potent DC maturation and elicits anti-tumor immunity. Guanine nucleotide exchange factor-H1 (GEF-H1) is specifically released upon microtubule destabilization and is required for DC activation. In response to chemotherapy, GEF-H1 drives a distinct cell signaling program in DCs dominated by the c-Jun N-terminal kinase (JNK) pathway and AP-1/ATF transcriptional response for control of innate and adaptive immune responses. Microtubule destabilization, and subsequent GEF-H1 signaling, enhances cross-presentation of tumor antigens to CD8 T cells. In absence of GEF-H1, anti-tumor immunity is hampered. In cancer patients, high expression of the GEF-H1 immune gene signature is associated with prolonged survival. Our study identifies an alternate intracellular axis in DCs induced upon microtubule destabilization in which GEF-H1 promotes protective anti-tumor immunity.


Assuntos
Células Dendríticas/metabolismo , Microtúbulos/metabolismo , Neoplasias/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/imunologia , Diferenciação Celular , Humanos
8.
J Immunother Cancer ; 7(1): 67, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871609

RESUMO

BACKGROUND: Cancer cells are known to develop mechanisms to circumvent effective anti-tumor immunity. The two ectonucleotidases CD39 and CD73 are promising drug targets, as they act in concert to convert extracellular immune-stimulating ATP to adenosine. CD39 is expressed by different immune cell populations as well as cancer cells of different tumor types and supports the tumor in escaping immune recognition and destruction. Thus, increasing extracellular ATP and simultaneously reducing adenosine concentrations in the tumor can lead to effective anti-tumor immunity. METHODS: We designed locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) with specificity for human or mouse CD39 that do not need a transfection reagent or delivery system for efficient target knockdown. Knockdown efficacy of ASOs on mRNA and protein level was investigated in cancer cell lines and in primary human T cells. The effect of CD39 knockdown on ATP-degrading activity was evaluated by measuring levels of ATP in tumor cell supernatants and analysis of T cell proliferation in the presence of extracellular ATP. The in vivo effects of CD39-specific ASOs on target expression, anti-tumor immune responses and on tumor growth were analyzed in syngeneic mouse tumor models using multi-color flow cytometry. RESULTS: CD39-specific ASOs suppressed expression of CD39 mRNA and protein in different murine and human cancer cell lines and in primary human T cells. Degradation of extracellular ATP was strongly reduced by CD39-specific ASOs. Strikingly, CD39 knockdown by ASOs was associated with improved CD8+ T cell proliferation. Treatment of tumor-bearing mice with CD39-specific ASOs led to dose-dependent reduction of CD39-protein expression in regulatory T cells (Tregs) and tumor-associated macrophages. Moreover, frequency of intratumoral Tregs was substantially reduced in CD39 ASO-treated mice. As a consequence, the ratio of CD8+ T cells to Tregs in tumors was improved, while PD-1 expression was induced in CD39 ASO-treated intratumoral CD8+ T cells. Consequently, CD39 ASO treatment demonstrated potent reduction in tumor growth in combination with anti-PD-1 treatment. CONCLUSION: Targeting of CD39 by ASOs represents a promising state-of-the art therapeutic approach to improve immune responses against tumors.


Assuntos
Apirase/genética , Inativação Gênica , Imunidade/genética , Neoplasias/genética , Neoplasias/imunologia , Oligonucleotídeos Antissenso/genética , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/patologia , Oligonucleotídeos Antissenso/administração & dosagem , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Cancer Res ; 25(10): 3026-3034, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30765392

RESUMO

PURPOSE: PD-(L)1-blocking antibodies have clinical activity in metastatic non-small cell lung cancer (NSCLC) and mediate durable tumor remissions. However, the majority of patients are resistant to PD-(L)1 blockade. Understanding mechanisms of primary resistance may allow prediction of clinical response and identification of new targetable pathways. EXPERIMENTAL DESIGN: Peripheral blood mononuclear cells were collected from 35 patients with NSCLC receiving nivolumab monotherapy. Cellular changes, cytokine levels, gene expression, and polymorphisms were compared between responders and nonresponders to treatment. Findings were confirmed in additional cohorts of patients with NSCLC receiving immune checkpoint blockade. RESULTS: We identified a genetic variant of a killer cell immunoglobulin-like receptor (KIR) KIR3DS1 that is associated with primary resistance to PD-1 blockade in patients with NSCLC. This association could be confirmed in independent cohorts of patients with NSCLC. In a multivariate analysis of the pooled cohort of 135 patients, the progression-free survival was significantly associated with presence of the KIR3DS1 allele (HR, 1.72; 95% confidence interval, 1.10-2.68; P = 0.017). No relationship was seen in cohorts of patients with NSCLC who did not receive immunotherapy. Cellular assays from patients before and during PD-1 blockade showed that resistance may be due to NK-cell dysfunction. CONCLUSIONS: We identified an association of the KIR3DS1 allelic variant with response to PD-1-targeted immunotherapy in patients with NSCLC. This finding links NK cells with response to PD-1 therapy. Although the findings are interesting, a larger analysis in a randomized trial will be needed to confirm KIRs as predictive markers for response to PD-1-targeted immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores KIR3DS1/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Variação Genética , Humanos , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/imunologia , Receptores KIR3DS1/imunologia , Resultado do Tratamento
10.
Oncogene ; 38(13): 2436, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510231

RESUMO

Following the publication of the above article, the authors noted an error in Figure 4, panel B. The colours of the localized and mCRPC samples were accidentally switched. The authors have corrected the colour scheme and added a key to the figure. They have also updated the colour scheme of panel C, both bars are now red instead of one red and one blue. The authors wish to apologize for any inconvenience caused.

11.
Oncogene ; 38(7): 913-934, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30194451

RESUMO

The propensity of cancer cells to transition between epithelial and mesenchymal phenotypic states via the epithelial-mesenchymal transition (EMT) program can regulate metastatic processes, cancer progression, and treatment resistance. Transcriptional investigations using reversible models of EMT, revealed the mesenchymal-to-epithelial reverting transition (MErT) to be enriched in clinical samples of metastatic castrate resistant prostate cancer (mCRPC). From this enrichment, a metastasis-derived gene signature was identified that predicted more rapid cancer relapse and reduced survival across multiple human carcinoma types. Additionally, the transcriptional profile of MErT is not a simple mirror image of EMT as tumour cells retain a transcriptional "memory" following a reversible EMT. This memory was also enriched in mCRPC samples. Cumulatively, our studies reveal the transcriptional profile of epithelial-mesenchymal plasticity and highlight the unique transcriptional properties of MErT. Furthermore, our findings provide evidence to support the association of epithelial plasticity with poor clinical outcomes in multiple human carcinoma types.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/mortalidade , Linhagem Celular Tumoral , Intervalo Livre de Doença , Humanos , Masculino , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/classificação , Neoplasias de Próstata Resistentes à Castração/patologia , Taxa de Sobrevida
12.
Cancer Immunol Immunother ; 67(5): 815-824, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29487979

RESUMO

Cancer immunotherapies have significantly improved the prognosis of cancer patients. Despite the clinical success of targeting inhibitory checkpoint receptors, including PD-1 and/or CTLA-4 on T cells, only a minority of patients derive benefit from these therapies. New strategies to improve cancer immunotherapy are therefore needed. Combination therapy of checkpoint inhibitors with targeted agents has promisingly shown to increase the efficacy of immunotherapy. Here, we analyzed the immunomodulatory effects of the multi-receptor tyrosine kinase inhibitor axitinib and its efficacy in combination with immunotherapies. In different syngeneic murine tumor models, axitinib showed therapeutic efficacy that was not only mediated by VEGF-VEGFR inhibition, but also through the induction of anti-cancer immunity. Mechanistically, a significant reduction of immune-suppressive cells, including a decrease of tumor-promoting mast cells and tumor-associated macrophages was observed upon axitinib treatment. Inhibition of mast cells by axitinib as well as their experimental depletion led to reduced tumor growth. Of note, treatment with axitinib led to an improved T cell response, while the latter was pivotal for the therapeutic efficacy. Combination with immune checkpoint inhibitors anti-PD-1 and anti-TIM-3 and/or agonistic engagement of the activating receptor CD137 resulted in a synergistic therapeutic efficacy. This demonstrates non-redundant immune activation induced by axitinib via modulation of myeloid and mast cells. These findings provide important mechanistic insights into axitinib-mediated anti-cancer immunity and provide rationale for clinical combinations of axitinib with different immunotherapeutic modalities.


Assuntos
Anticorpos Monoclonais/farmacologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Sinergismo Farmacológico , Imidazóis/farmacologia , Terapia de Imunossupressão , Indazóis/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Axitinibe , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Modelos Animais de Doenças , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
13.
Sci Rep ; 8(1): 583, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330502

RESUMO

Insulin-like growth factor (IGF)-I binds to the ECM protein vitronectin (VN) through IGF binding proteins (IGFBPs) to enhance proliferation and migration of skin keratinocytes and fibroblasts. Although evidence exists for the role of individual components of the complex (IGF-I, IGFBP-3 and VN), the cellular functions stimulated by these proteins together as a complex remains un-investigated in melanoma cells. We report here that the IGF-I:IGFBP-3:VN trimeric complex stimulates a dose-dependent increase in the proliferation and migration of WM35 and Sk-MEL28 melanoma cells. In 3D Matrigel™ and hydrogel cultures, both cell lines formed primary tumor-like spheroids, which increased in size in a dose-dependent manner in response to the trimeric complex. Furthermore, we reveal IGFBP-3:VN protein complexes in malignant melanoma and squamous cell carcinoma patient tissues, where the IGFBP-3:VN complex was seen to be predominantly tumor cell-associated. Peptide antagonists designed to target the binding of IGF-I:IGFBP-3 to VN were demonstrated to inhibit IGF-I:IGFBP-3:VN-stimulated cell migration, invasion and 3D tumor cell growth of melanoma cells. Overall, this study provides new data on IGF:ECM interactions in skin malignancies and demonstrates the potential usefulness of a growth factor:ECM-disrupting strategy for abrogating tumor progression.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Melanoma/metabolismo , Vitronectina/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Matriz Extracelular/metabolismo , Humanos , Complexos Multiproteicos/farmacologia , Ligação Proteica
14.
Mol Cancer Ther ; 15(7): 1602-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27196774

RESUMO

We provide proof-of-concept evidence for a new class of therapeutics that target growth factor:extracellular matrix (GF:ECM) interactions for the management of breast cancer. Insulin-like growth factor-I (IGF-I) forms multiprotein complexes with IGF-binding proteins (IGFBP) and the ECM protein vitronectin (VN), and stimulates the survival, migration and invasion of breast cancer cells. For the first time we provide physical evidence for IGFBP-3:VN interactions in breast cancer patient tissues; these interactions were predominantly localized to tumor cell clusters and in stroma surrounding tumor cells. We show that disruption of IGF-I:IGFBP:VN complexes with L(27)-IGF-II inhibits IGF-I:IGFBP:VN-stimulated breast cancer cell migration and proliferation in two- and three-dimensional assay systems. Peptide arrays screened to identify regions critical for the IGFBP-3/-5:VN and IGF-II:VN interactions demonstrated IGFBP-3/-5 and IGF-II binds VN through the hemopexin-2 domain, and VN binds IGFBP-3 at residues not involved in the binding of IGF-I to IGFBP-3. IGFBP-interacting VN peptides identified from these peptide arrays disrupted the IGF-I:IGFBP:VN complex, impeded the growth of primary tumor-like spheroids and, more importantly, inhibited the invasion of metastatic breast cancer cells in 3D assay systems. These studies provide first-in-field evidence for the utility of small peptides in antagonizing GF:ECM-mediated biologic functions and present data demonstrating the potential of these peptide antagonists as novel therapeutics. Mol Cancer Ther; 15(7); 1602-13. ©2016 AACR.


Assuntos
Neoplasias da Mama/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Somatomedinas/metabolismo , Vitronectina/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imuno-Histoquímica , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/química , Ligantes , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Somatomedinas/química , Vitronectina/química
15.
Sci Rep ; 6: 24569, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27087056

RESUMO

Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care.


Assuntos
Biomarcadores Tumorais/normas , Melanoma/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Antígeno MART-1/genética , Antígeno MART-1/metabolismo , Melanoma/patologia , Antígenos Específicos de Melanoma/genética , Antígenos Específicos de Melanoma/metabolismo , Metástase Neoplásica , Proteínas S100/genética , Proteínas S100/metabolismo , Sensibilidade e Especificidade , Antígeno gp100 de Melanoma
16.
BMC Cancer ; 14: 627, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25167778

RESUMO

BACKGROUND: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I: IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. METHODS: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. RESULTS: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while ß1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and ß1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. CONCLUSION: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.


Assuntos
Neoplasias da Mama/patologia , Matriz Extracelular/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais
17.
IUBMB Life ; 65(10): 807-18, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24030926

RESUMO

The concept that the mammalian glycoprotein vitronectin acts as a biological 'glue' and key controller of mammalian tissue repair and remodelling activity is emerging from nearly 50 years of experimental in vitro and in vivo data. Unexpectedly, the vitronectin-knockout (VN-KO) mouse was found to be viable and to have largely normal phenotype. However, diligent observation revealed that the VN-KO animal exhibits delayed coagulation and poor wound healing. This is interpreted to indicate that VN occupies a role in the earliest events of thrombogenesis and tissue repair. VN is the foundation upon which the thrombus grows in an organised structure. In addition to sealing the wound, the thrombus also serves to protect the underlying tissue from oxidation, is a reservoir of mitogens and tissue repair mediators, and provides a provisional scaffold for the repairing tissue. In the absence of VN (e.g., VN-KO animal), this cascade is disrupted before it begins. A wide variety of biologically active species associate with VN. Although initial studies were focused on mitogens, other classes of bioactives (e.g., glycosaminoglycans and metalloproteinases) are now also known to specifically interact with VN. Although some interactions are transient, others are long-lived and often result in multi-protein complexes. Multi-protein complexes provide several advantages: prolonging molecular interactions, sustaining local concentrations, facilitating co-stimulation of cell surface receptors and thereby enhancing cellular/biological responses. We contend that these, or equivalent, multi-protein complexes facilitate VN polyfunctionality in vivo. It is also likely that many of the species demonstrated to associate with VN in vitro, also associate with VN in vivo in similar multi-protein complexes. Thus, the predominant biological function of VN is that of a master controller of the extracellular environment; informing, and possibly instructing cells 'where' to behave, 'when' to behave and 'how' to behave (i.e., appropriately for the current circumstance).


Assuntos
Coagulação Sanguínea/genética , Matriz Extracelular/metabolismo , Complexos Multiproteicos/genética , Vitronectina/genética , Animais , Glicosaminoglicanos/metabolismo , Camundongos , Camundongos Knockout , Vitronectina/metabolismo , Cicatrização/genética
18.
Biochim Biophys Acta ; 1830(10): 4734-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23800578

RESUMO

BACKGROUND: The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some of these functions involve regulation by the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, the functions and exact nature of these interactions remain incomplete. METHODS: IGF-I variants PEGylated at lysines K27, K65 and K68, were assessed for binding to IGFBPs using BIAcore, and for phosphorylation of the IGF-IR. Furthermore, functional consequences of PEGylation were investigated using cell viability and migration assays. In addition, downstream signaling pathways were analyzed using phospho-AKT and phospho-ERK1/2 assays. RESULTS: IGF-I PEGylated at lysines 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) was employed. Receptor phosphorylation was similarly reduced 2-fold with PEG-K65 and PEG-K68 in 3T3 fibroblasts and MCF-7 breast cancer cells, whereas PEG-K27 showed a more than 10- and 3-fold lower activation for 3T3 and MCF-7 cells, respectively. In addition, all PEG-IGF-I variants had a 10-fold reduced association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes, whereas cell viability was fully preserved. Analysis of downstream signaling revealed that AKT was preferentially affected upon treatment with PEG-IGF-I variants whereas MAPK signaling was unaffected by PEGylation. CONCLUSION: PEGylation of IGF-I has an impact on cell migration but not on cell viability. GENERAL SIGNIFICANCE: PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on receptor interaction as well as key extracellular proteins such as VN and IGFBPs.


Assuntos
Movimento Celular/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Lisina/metabolismo , Polietilenoglicóis/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Fosforilação , Polietilenoglicóis/química , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes/metabolismo
19.
Endocrinology ; 152(4): 1388-401, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21303956

RESUMO

Recent studies have demonstrated that IGF-I associates with vitronectin (VN) through IGF-binding proteins (IGFBP), which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment, and migration. Because IGFs play important roles in transformation and progression of breast tumors, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of phosphoinositide 3-kinase/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and phosphoinositide 3-kinase pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion, and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue ([L(24)][A(31)]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of extracellular matrix and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Vitronectina/metabolismo , Vitronectina/farmacologia , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...