Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 847635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308262

RESUMO

Wheat is a major source of energy and nutrition worldwide, but it is also a primary cause of frequent diet-induced health issues, specifically celiac disease, for which the only effective therapy so far is strict dietary abstinence from gluten-containing grains. Wheat gluten proteins are grouped into two major categories: high-molecular-weight glutenin subunits (HMWgs), vital for mixing and baking properties, and gliadins plus low-molecular-weight glutenin subunits (LMWgs) that contain the overwhelming majority of celiac-causing epitopes. We put forth a hypothesis that eliminating gliadins and LMWgs while retaining HMWgs might allow the development of reduced-immunogenicity wheat genotypes relevant to most gluten-sensitive individuals. This hypothesis stems from the knowledge that the molecular structures and regulatory mechanisms of the genes encoding the two groups of gluten proteins are quite different, and blocking one group's transcription, without affecting the other's, is possible. The genes for gliadins and LMWgs have to be de-methylated by 5-methylcytosine DNA glycosylase/lyase (DEMETER) and an iron-sulfur (Fe-S) cluster biogenesis enzyme (DRE2) early during endosperm development to permit their transcription. In this study, a TILLING (Targeting Induced Local Lesions IN Genomes) approach was undertaken to identify mutations in the homoeologous DEMETER (DME) and DRE2 genes in common and durum wheat. Lines with mutations in these genes were obtained that displayed reduced content of immunogenic gluten proteins while retaining essential baking properties. Although our data at first glance suggest new possibilities for treating celiac disease and are therefore of medical and agronomical interest, it also shows that inducing mutations in the DME and DRE2 genes analyzed here affected pollen viability and germination. Hence there is a need to develop other approaches in the future to overcome this undesired effect.

2.
Methods Mol Biol ; 2124: 263-279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32277459

RESUMO

There are specific advantages of using microspores as explants: (1) A small number of explant donors are required to obtain the desired number of pollen embryoids for genetic transformation and (2) microspores constitute a synchronous mass of haploid cells, which are transformable by various means and convertible to doubled haploids therefore allow production of homozygous genotypes in a single generation. Additionally, it has been demonstrated in wheat and other crops that microspores can be easily induced to produce embryoids and biolistic approach to produce a large number of transformants. In view of these listed advantages, we optimized the use of microspore-derived calli for biolistic transformation of wheat. The procedure takes about 6 months to obtain the viable transformants in the spring wheat background. In the present communication, we demonstrated the use of this method to produce the reduced immunogenicity wheat genotypes.


Assuntos
Biolística/métodos , Pólen/genética , Transformação Genética , Triticum/genética , Cromossomos de Plantas/genética , Colchicina/farmacologia , DNA de Plantas/genética , Genótipo , Ouro/química , Plantas Geneticamente Modificadas , Ploidias , Regeneração , Triticum/crescimento & desenvolvimento
3.
Funct Integr Genomics ; 20(1): 63-74, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31332594

RESUMO

To understand the molecular changes taking place during the early grain development in common wheat, we profiled transcriptome and proteome of two cultivars, "P271" and "Chinese Spring" (CS) with large and small grains, respectively. More than 85,000 genes and 7500 proteins were identified to express during early grain development in two wheat cultivars. We observed enrichment in the number of genes falling in the functional categories-carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism with progression in grain development, which indicates towards the importance of these metabolic pathways during grain maturation. Many genes showed inconsistency between transcription and translation, which suggested a role of post-transcriptional events that determine the fate of nascent transcript/protein, in the early grain development. In silico localization of differentially expressed genes/proteins between CS and P271 to wheat chromosomes, exhibited a biased genomic distribution with chromosomes 1A, 4B, and 5B contributing primarily to it. These results corroborated the earlier findings, where chromosomes 1A, 4B, and 5B were reported to harbor genes/QTLs for yield contributing traits such as grain length and thickness. Collectively, this study reveals the molecular changes taking place during early grain development, through light on the regulation of these processes, and allows identification of the gene candidates contributing to the contrasting grain characteristics of CS and P721. This information has implications in the future wheat breeding for the enhanced grain yield.


Assuntos
Grão Comestível/genética , Grão Comestível/metabolismo , Triticum/genética , Triticum/metabolismo , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genômica , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , RNA-Seq , Transcriptoma , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...