Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Robot Surg ; 18(1): 16, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217749

RESUMO

Robotic assisted surgery (RAS) has seen a global rise in adoption. Despite this, there is not a standardised training curricula nor a standardised measure of performance. We performed a systematic review across the surgical specialties in RAS and evaluated tools used to assess surgeons' technical performance. Using the PRISMA 2020 guidelines, Pubmed, Embase and the Cochrane Library were searched systematically for full texts published on or after January 2020-January 2022. Observational studies and RCTs were included; review articles and systematic reviews were excluded. The papers' quality and bias score were assessed using the Newcastle Ottawa Score for the observational studies and Cochrane Risk Tool for the RCTs. The initial search yielded 1189 papers of which 72 fit the eligibility criteria. 27 unique performance metrics were identified. Global assessments were the most common tool of assessment (n = 13); the most used was GEARS (Global Evaluative Assessment of Robotic Skills). 11 metrics (42%) were objective tools of performance. Automated performance metrics (APMs) were the most widely used objective metrics whilst the remaining (n = 15, 58%) were subjective. The results demonstrate variation in tools used to assess technical performance in RAS. A large proportion of the metrics are subjective measures which increases the risk of bias amongst users. A standardised objective metric which measures all domains of technical performance from global to cognitive is required. The metric should be applicable to all RAS procedures and easily implementable. Automated performance metrics (APMs) have demonstrated promise in their wide use of accurate measures.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgiões , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Robótica/educação , Currículo , Cirurgiões/educação , Competência Clínica
3.
Int Urol Nephrol ; 39(1): 179-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17171415

RESUMO

Every Urologist, during the course of fulguration treatment of bladder tumours, has at some time or another experienced small intravesical explosions usually manifesting as a "pop". Major intravesical explosions are rare but potentially devastating complications of transurethral endoscopic resections. The damage to the bladder can range from small mucosal tears to bladder rupture, which can either be intraperitoneal (requiring laparotomy and open bladder repair) or extraperitoneal. We review the literature on intravesical explosions to determine the aetiology of these explosions and suggest strategies to prevent these. A comprehensive literature search was performed using Medline and Ovid to obtain information using search terms: intravesical explosions, transurethral procedures, endoscopic procedures, diathermyIntravesical explosions occur due to the production of explosive gases during use of diathermy on human tissues. The most dangerous combination is hydrogen and oxygen. Hydrogen alone is not explosive and it only becomes explosive when admixed with oxygen. Oxygen is not produced in sufficient quantity during diathermy to cause explosions but can enter into the bladder from the atmosphere during endoscopic procedures. Careful operative technique (correct use of the Ellick evacuator bulb and reducing the frequency of manual irrigations of the bladder) with minimisation of the operative time and using the coagulation current at moderate power as well as judicious coagulation of tissues can reduce the risk of this dangerous complication arising.


Assuntos
Procedimentos Cirúrgicos Urológicos/efeitos adversos , Humanos , Doenças da Bexiga Urinária/etiologia , Doenças da Bexiga Urinária/prevenção & controle , Doenças da Bexiga Urinária/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA