Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 392: 110921, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382705

RESUMO

Cyclometalated Ir(III) complex [Ir(L)2(dppz)]PF6 (where L = 1-methyl-2-(thiophen-2-yl)-1H-benzo[d]imidazole and dppz = dipyrido [3,2-a:2',3'-c]phenazine) (Ir1) is potent anticancer agent whose potency can be significantly increased by irradiation with blue light. Structural features of the cyclometalated Ir(III) complex Ir1 investigated in this work, particularly the presence of dppz ligand possessing an extended planar area, suggest that this complex could interact with DNA. Here, we have shown that Ir1 accumulates predominantly in mitochondria of cancer cells where effectively and selectively binds mitochondrial (mt)DNA. Additionally, the results demonstrated that Ir1 effectively suppresses transcription of mitochondria-encoded genes, especially after irradiation, which may further affect mitochondrial (and thus also cellular) functions. The observation that Ir1 binds selectively to mtDNA implies that the mechanism of its biological activity in cancer cells may also be connected with its interaction and damage to mtDNA. Further investigations revealed that Ir1 tightly binds DNA in a cell-free environment, with sequence preference for GC over AT base pairs. Although the dppz ligand itself or as a ligand in structurally similar DNA-intercalating Ru polypyridine complexes based on dppz ligand intercalates into DNA, the DNA binding mode of Ir1 comprises surprisingly a groove binding rather than an intercalation. Also interestingly, after irradiation with visible (blue) light, Ir1 was capable of cleaving DNA, likely due to the production of superoxide anion radical. The results of this study show that mtDNA damage by Ir1 plays a significant role in its mechanism of antitumor efficacy. In addition, the results of this work are consistent with the hypothesis and support the view that targeting the mitochondrial genome is an effective strategy for anticancer (photo)therapy and that the class of photoactivatable dipyridophenazine Ir(III) compounds may represent prospective substances suitable for further testing.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , DNA Mitocondrial , Irídio/farmacologia , Irídio/química , Ligantes , Estudos Prospectivos , Mitocôndrias , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
2.
J Med Chem ; 67(1): 691-708, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38141031

RESUMO

A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.


Assuntos
Antineoplásicos , Complexos de Coordenação , Dermatite Fototóxica , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Irídio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dermatite Fototóxica/tratamento farmacológico , Lisossomos , Benzotiazóis , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
3.
Chem Biol Interact ; 385: 110742, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802407

RESUMO

The indole scaffold has been established as a key organic moiety for developing new drugs; on the other hand, a range of diiron bis-cyclopentadienyl complexes have recently emerged for their promising anticancer potential. Here, we report the synthesis of novel diiron complexes with an indole-functionalized vinyliminium ligand (2-5) and an indole-lacking analogue for comparative purposes (6), which were characterized by analytical and spectroscopic techniques. Complexes 2-6 are substantially stable in DMSO­d6 and DMEM-d solutions at 37 °C (8% average degradation after 48 h) and display a balanced hydrophilic/lipophilic behaviour (LogPow values in the range -0.32 to 0.47), associated with appreciable water solubility. The complexes display selective antiproliferative potency towards several cancer cells in monolayer cultures, mainly in the low micromolar range, with reduced toxicity towards noncancerous epithelial cells. Thus, the cytotoxicity of the complexes is comparable to or better than clinically used metallopharmaceutical cisplatin. Comparing the antiproliferative activity obtained for complexes containing different ligands, we confirmed the importance of the indolyl group in the mechanism of antiproliferative activity of these complexes. Cell-based mechanistic studies suggest that the investigated diiron vinyliminium complexes (DVCs) show cytostatic rather than cytotoxic effects and subsequently induce a population of cells to undergo apoptosis. Furthermore, the molecular mechanism of action involves interactions with mitochondrial DNA and proteins, the reactive oxygen species (ROS)-scavenging properties and antioxidant activity of these complexes in cancer cells. This study highlights the importance of DVCs to their cancer cell activity and reinforces their prospective therapeutic potential as anticancer agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antineoplásicos/química , Homeostase , Indóis/farmacologia , Complexos de Coordenação/química , Apoptose , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
4.
Angew Chem Int Ed Engl ; 62(42): e202310774, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37646232

RESUMO

A multitargeting prodrug (2) that releases gemcitabine, oxaliplatin, and doxorubicin in their active form in cancer cells is a potent cytotoxic agent with nM IC50s ; it is highly selective to cancer cells with mean selectivity indices to human (136) and murine (320) cancer cells. It effectively induces release of DAMPs (CALR, ATP & HMGB1) in CT26 cells facilitating more efficient phagocytosis by J774 macrophages than the FDA drugs or their co-administration. The viability of CT26 cells co-cultured with J774 macrophages and treated with 2 was reduced by 32 % compared to the non-treated cells, suggesting a synergistic antiproliferative effect between the chemical and immune reactions. 2 inhibited in vivo tumor growth in two murine models (LLC and CT26) better than the FDA drugs or their co-administration with significantly lower body weight loss. Mice inoculated with CT26 cells treated with 2 showed slightly better tumor free survival than doxorubicin.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Camundongos , Humanos , Animais , Oxaliplatina/farmacologia , Gencitabina , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral
5.
Molecules ; 28(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446835

RESUMO

The purine derivative fludarabine is part of frontline therapy for chronic lymphocytic leukaemia (CLL). It has shown positive effects on solid tumours such as melanoma, breast, and colon carcinoma in clinical phase I studies. As the treatment of CLL cells with combinations of fludarabine and metal complexes of antitumoural natural products, e.g., illudin M ferrocene, has led to synergistically enhanced apoptosis, in this research study different complexes of fludarabine itself. Four complexes bearing a trans-[Br(PPh3)2]Pt/Pd fragment attached to atom C-8 via formal η1-sigma or η2-carbene bonds were synthesised in two or three steps without protecting polar groups on the arabinose or adenine. The platinum complexes were more cytotoxic than their palladium analogues, with low single-digit micromolar IC50 values against cells of various solid tumour entities, including cisplatin-resistant ones and certain B-cell lymphoma and CLL, presumably due to the ten-fold higher cellular uptake of the platinum complexes. However, the palladium complexes interacted more readily with isolated Calf thymus DNA. Interestingly, the platinum complexes showed vastly greater selectivity for cancer over non-malignant cells when compared with fludarabine.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Platina/química , Antimetabólitos/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Paládio/química , Antineoplásicos/química , Imunossupressores/uso terapêutico
6.
J Med Chem ; 66(12): 7894-7908, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37285472

RESUMO

The platinum(II) complex [Pt(1S,2S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (PtII56MeSS, 1) exhibits high potency across numerous cancer cell lines acting by a multimodal mechanism. However, 1 also displays side toxicity and in vivo activity; all details of its mechanism of action are not entirely clear. Here, we describe the synthesis and biological properties of new platinum(IV) prodrugs that combine 1 with one or two axially coordinated molecules of diclofenac (DCF), a non-steroidal anti-inflammatory cancer-selective drug. The results suggest that these Pt(IV) complexes exhibit mechanisms of action typical for Pt(II) complex 1 and DCF, simultaneously. The presence of DCF ligand(s) in the Pt(IV) complexes promotes the antiproliferative activity and selectivity of 1 by inhibiting lactate transporters, resulting in blockage of the glycolytic process and impairment of mitochondrial potential. Additionally, the investigated Pt(IV) complexes selectively induce cell death in cancer cells, and the Pt(IV) complexes containing DCF ligands induce hallmarks of immunogenic cell death in cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Platina , Diclofenaco/farmacologia , Ligantes , Compostos Organoplatínicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Tumoral
7.
Inorg Chem ; 62(16): 6474-6487, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37040203

RESUMO

We present the synthesis and characterization of six new heteroleptic osmium(II) complexes of the type [Os(C^N)(N^N)2]OTf (N^N = 2,2'-bipyridine and dipyrido[3,2-d:2',3'-f]quinoxaline; C^N = deprotonated methyl 1-butyl-2aryl-benzimidazolecarboxylate) with varying substituents in the R3 position of the phenyl ring of the cyclometalating C^N ligand. The new compounds are highly kinetically inert and absorb a full-wavelength range of visible light. An investigation of the antiproliferative activity of the new compounds has been performed using a panel of human cancer and noncancerous 2D cell monolayer cultures under dark conditions and green light irradiation. The results demonstrate that the new Os(II) complexes are markedly more potent than conventional cisplatin. The promising antiproliferative activity of selected Os(II) complexes was also confirmed using 3D multicellular tumor spheroids, which have the characteristics of solid tumors and can mimic the tumor tissue microenvironment. The mechanism of antiproliferative action of complexes has also been investigated and revealed that the investigated Os(II) complexes activate the endoplasmic reticulum stress pathway in cancer cells and disrupt calcium homeostasis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Relação Estrutura-Atividade , Osmio/farmacologia , Cálcio , Linhagem Celular Tumoral , Benzimidazóis/farmacologia , Homeostase , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia
8.
J Med Chem ; 65(15): 10567-10587, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35913426

RESUMO

While ruthenium arene complexes have been widely investigated for their medicinal potential, studies on homologous compounds containing a tridentate tris(1-pyrazolyl)methane ligand are almost absent in the literature. Ruthenium(II) complex 1 was obtained by a modified reported procedure; then, the reactions with a series of organic molecules (L) in boiling alcohol afforded novel complexes 2-9 in 77-99% yields. Products 2-9 were fully structurally characterized. They are appreciably soluble in water, where they undergo partial chloride/water exchange. The antiproliferative activity was determined using a panel of human cancer cell lines and a noncancerous one, evidencing promising potency of 1, 7, and 8 and significant selectivity toward cancer cells. The tested compounds effectively accumulate in cancer cells, and mitochondria represent a significant target of biological action. Most notably, data provide convincing evidence that the mechanism of biological action is mediated by the inhibiting of mitochondrial calcium intake.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cálcio , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Homeostase , Humanos , Mitocôndrias , Neoplasias/tratamento farmacológico , Rutênio/farmacologia , Água
9.
Metallomics ; 14(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35759404

RESUMO

This work studied the mechanism of action of a Pt(IV) complex 2 bearing two axial lonidamine ligands, which are selective inhibitors of aerobic glycolysis. The presence of two lonidamine ligands in 2 compared to the parent Pt(II) complex increased its antiproliferative activity, cellular accumulation, and changed its cell cycle profile and mechanism of cell death. In 3D cell culture, 2 showed exceptional antiproliferative activity with IC50 values as low as 1.6 µM in MCF7 cells. The study on the influence of the lonidamine ligands in the Pt complex on glycolysis showed only low potency of ligands to affect metabolic processes in cancer cells, making the investigated complex, not a dual- or multi-action prodrug. However, the Pt(IV) prodrug effectively delivers the cytotoxic Pt(II) complex into cancer cells.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Indazóis , Ligantes , Pró-Fármacos/farmacologia
10.
Bioinorg Chem Appl ; 2022: 3095749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502218

RESUMO

In this work, gallium(III) complex with cloxyquin (5-chloro-8-quinolinol, HClQ) ligands is shown to effectively inhibit proliferation of rhabdomyosarcoma cells, the frequent, aggressive, and poorly treatable cancer of children. It offers striking selectivity to cancer cells compared to noncancerous human fibroblasts. The data reveal that the complex induces ferroptosis in rhabdomyosarcoma cells, likely due to interfering with iron metabolism. Importantly, it can kill both bulk and stem rhabdomyosarcoma cells. To the best of our knowledge, this is the first compound based on metal other than Fe capable of inducing ferroptosis in cancer cells.

11.
Chem Biol Interact ; 360: 109955, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447138

RESUMO

In this work, the mechanism underlying the anticancer activity of a photoactivatable Ir(III) compound of the type [Ir(C^N)2(dppz)][PF6] where C^N = 1-methyl-2-(2'-thienyl)benzimidazole (complex 1) was investigated. Complex 1 photoactivated by visible light shows potent activity against highly aggressive and poorly treatable Rhabdomyosarcoma (RD) cells, the most frequent soft tissue sarcomas of children. This remarkable activity of 1 was observed not only in RD cells cultured in 2D monolayers but, more importantly, also in 3D spheroids, which resemble in many aspects solid tumors and serve as a promising model to mimic the in vivo situation. Importantly, photoactivated 1 kills not only differentiated RD cells but also even more effectively cancer stem cells (CSCs) of RD. One of the factors responsible for the activity of irradiated 1 in RD CSCs is its ability to produce ROS in these cells more effectively than in differentiated RD cells. Moreover, photoactivated 1 caused in RD differentiated cells and CSCs a significant decrease of mitochondrial membrane potential and promotes opening mitochondrial permeability transition pores in these cells, a mechanism that has never been demonstrated for any other metal-based anticancer complex. The results of this work give evidence that 1 has a potential for further evaluation using in vivo models as a promising chemotherapeutic agent for photodynamic therapy of hardly treatable human Rhabdomyosarcoma, particularly for its activity in both stem and differentiated cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rabdomiossarcoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Criança , Complexos de Coordenação/farmacologia , Humanos , Irídio/farmacologia , Mitocôndrias , Células-Tronco Neoplásicas , Rabdomiossarcoma/tratamento farmacológico
12.
Bioinorg Chem Appl ; 2022: 1717200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281329

RESUMO

One concept of improving anticancer effects of conventional platinum-based antitumor drugs consists of conjugating these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, physicochemical characterization, biological effects, and mechanisms of action of four new analogs of conventional cisplatin, namely, cis-Pt(II) complexes containing either methyl or ethyl pyrazole N-donor ligands and chlorido or iodido ligands. It is noteworthy that while chlorido complexes display activity in a variety of cancer cell lines comparable to cisplatin, iodido complexes are considerably more potent due to their enhanced hydrophobicity and consequently enhanced cellular accumulation. Moreover, all of the studied Pt(II) alkylpyrazole complexes display a higher selectivity for tumor cells and effectively overcome the acquired resistance to cisplatin. Further results focused on the mechanism of action of the studied complexes and showed that in contrast to cisplatin and several platinum-based antitumor drugs, DNA damage by the investigated Pt(II)-alkylpyrazole complexes does not play a major role in their mechanism of action. Our findings demonstrate that inhibition of the tubulin kinesin Eg5, which is essential for forming a functional mitotic spindle, plays an important role in their mechanism of antiproliferative action.

13.
J Inorg Biochem ; 226: 111628, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673378

RESUMO

The platinum drugs belong to prevailing chemotherapeutics used in the treatment of cancer. At present, however, the search for new anticancer metal-based drugs that operate by the mechanisms distinct from those of the conventional chemotherapeutics is very active. Furthermore, it has been demonstrated that cytotoxic chemotherapy and immunotherapy may exert a highly synergistic anticancer activity. Thus, the development of antitumor platinum and other metal-based drugs that exhibit cytostatic effects and concurrently elicit immunogenic cell death (ICD) has shown promise for cancer treatment. Notably, conventional platinum drug oxaliplatin ([Pt(1R,2R-DACH)(oxalate)], DACH = diaminocyclohexane) is a well-known agent that displays both cytostatic and immune responses. Moreover, it was also demonstrated that even minor derivatization of the unleaving cycloalkyl moiety in oxaliplatin might have a pronounced effect on its immunomodulatory activity. Here, we investigated how replacing the 1R,2R- diaminocyclohexane ring by 1,3-diaminocycloalkane (alkane = butane, pentane, or hexane) affects the ability to evoke secretion of damage-associated molecular patterns characteristic of ICD in model murine colorectal carcinoma cell line CT26. The results indicate that among the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes, the complex containing the cyclobutyl moiety exhibits the hallmarks typical of ICD inducers. Thus, [Pt(cis-1,3-diaminocyclobutane)Cl2] may expand the spectrum of anticancer chemotherapeutics capable of inducing ICD in cancer cells and might be of interest for further (pre)clinical development.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Complexos de Coordenação , Agentes de Imunomodulação , Neoplasias Experimentais , Platina , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Platina/química , Platina/farmacologia
14.
Chemistry ; 27(41): 10711-10716, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34046954

RESUMO

Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , DNA , Feminino , Humanos , Luz , Compostos Organoplatínicos , Platina
15.
Dalton Trans ; 50(23): 8017-8028, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34008653

RESUMO

Complexes [Ru(η6-pcym)(bpydca)Cl]PF6 (Rudca) and [Ir(η5-Cp*)(bpydca)Cl]PF6 (Irdca) were developed as model compounds for the investigation of multi-targeted ester-functionalized half-sandwich ruthenium(ii) and iridium(iii) complexes; pcym = 1-methyl-4-(propan-2-yl)benzene (p-cymene), bpydca = 2,2'-bipyridine-4,4'-diyldimethanediyl bis(dichloroacetate), Cp* = pentamethylcyclopentadienyl. Aiming to understand the in-solution behaviour of these first-in-class complexes containing the pyruvate dehydrogenase kinase inhibitor dichloroacetate (dca) as the terminal bioactive substituent, several experiments were performed under aqueous conditions for Rudca and Irdca, as well as for compounds [Ru(η6-pcym)(bpyOH)Cl]PF6 (RuOH) and [Ir(η5-Cp*)(bpyOH)Cl]PF6 (IrOH), and acetyl analogues [Ru(η6-pcym)(bpyac)Cl]PF6 (Ruac) and [Ir(η5-Cp*)(bpyac)Cl]PF6 (Irac) bearing a different (biologically inactive) terminal substituent; bpyOH = 2,2'-bipyridine-4,4'-diyldimethanol, bpyac = 2,2'-bipyridine-4,4'-diyldimethanediyl diacetate. The experiments were also conducted in the presence of porcine liver esterase (PLE). All the six complexes were characterized by relevant techniques (e.g., NMR and mass spectrometry), including a single-crystal X-ray analysis of complexes Rudca, Ruac, RuOH and IrOH. Although designed as model compounds, Rudca, Irdca, RuOH and IrOH were also screened for their antiproliferative activity in four human cancer cell lines (HCT116 colon carcinoma, MDA-MB-231 and MCF-7 breast adenocarcinomas, DU145 prostate carcinoma), where the tested complexes did not show any effect (IC50 > 100 µM).

16.
Chemistry ; 27(33): 8547-8556, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33835526

RESUMO

A cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII -COUPY (3), was recently shown as a very promising photosensitizer suitable for photodynamic therapy of cancer. Therefore, the primary goal of this work was to deepen knowledge on the mechanism of its photoactivated antitumor action so that this information could be used to propose a new class of compounds as drug candidates for curing very hardly treatable human tumors, such as androgen resistant prostatic tumors of metastatic origin. Conventional anticancer chemotherapies exhibit several disadvantages, such as limited efficiency to target cancer stem cells (CSCs), which are considered the main reason for chemotherapy resistance, relapse, and metastasis. Herein, we show, using DU145 tumor cells, taken as the model of hormone-refractory and aggressive prostate cancer cells resistant to conventional antineoplastic drugs, that the photoactivated conjugate 3 very efficiently eliminates both prostate bulk (differentiated) and prostate hardly treatable CSCs simultaneously and with a similar efficiency. Notably, the very low toxicity of IrIII -COUPY conjugate in the prostate DU145 cells in the dark and its pronounced selectivity for tumor cells compared with noncancerous cells could result in low side effects and reduced damage of healthy cells during the photoactivated therapy by this agent. Moreover, the experiments performed with the 3D spheroids formed from DU145 CSCs showed that conjugate 3 can penetrate the inner layers of tumor spheres, which might markedly increase its therapeutic effect. Also interestingly, this conjugate induces apoptotic cell death in prostate cancer DU145 cells associated with calcium signaling flux in these cells and autophagy. To the best of our knowledge, this is the first study demonstrating that a photoactivatable metal-based compound is an efficient agent capable of killing even hardly treatable CSCs.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cumarínicos/farmacologia , Humanos , Masculino , Células-Tronco Neoplásicas , Neoplasias da Próstata/tratamento farmacológico
17.
J Biol Inorg Chem ; 25(6): 913-924, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32851480

RESUMO

The search for more effective platinum anticancer drugs has led to the design, synthesis, and preclinical testing of hundreds of new platinum complexes. This search resulted in the recognition and subsequent FDA approval of the third-generation Pt(II) anticancer drug, [Pt(1,2-diaminocyclohexane)(oxalate)], oxaliplatin, as an effective agent in treating colorectal and gastrointestinal cancers. Another promising example of the class of anticancer platinum(II) complexes incorporating the Pt(1,n-diaminocycloalkane) moiety is kiteplatin ([Pt(cis-1,4-DACH)Cl2], DACH = diaminocyclohexane). We report here our progress in evaluating the role of the cycloalkyl moiety in these complexes focusing on the synthesis, characterization, evaluation of the antiproliferative activity in tumor cells and studies of the mechanism of action of new [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes wherein the cis-1,3-diaminocycloalkane group contains the cyclobutyl, cyclopentyl, and cyclohexyl moieties. We demonstrate that [Pt(cis-1,3-DACH)Cl2] destroys cancer cells with greater efficacy than the other two investigated 1,3-diamminocycloalkane derivatives, or cisplatin. Moreover, the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes show selectivity toward tumor cells relative to non-tumorigenic normal cells. We also performed several mechanistic studies in cell-free media focused on understanding some early steps in the mechanism of antitumor activity of bifunctional platinum(II) complexes. Our data indicate that reactivities of the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes and cisplatin with glutathione and DNA binding do not correlate with antiproliferative activity of these platinum(II) complexes in cancer cells. In contrast, we show that the higher antiproliferative activity in cancer cells of [Pt(cis-1,3-DACH)Cl2] originates from its highest hydrophobicity and most efficient cellular uptake.


Assuntos
Antineoplásicos/síntese química , Hidrocarbonetos Cíclicos/síntese química , Compostos Organometálicos/síntese química , Platina/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/normas , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa/química , Humanos , Compostos Organometálicos/farmacologia
18.
Angew Chem Int Ed Engl ; 59(47): 21157-21162, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32750194

RESUMO

HER2-positive breast cancer is an aggressive subtype that typically responds poorly to standard chemotherapy. To design an anticancer drug selective for HER2-expressing breast cancer, a PtIV prodrug with axial oleate and cinnamate ligands was synthesized. We demonstrate its superior antiproliferative activity in monolayer and 3D spheroid models; the antiproliferative efficiency increases gradually with increasing expression of HER2. The results also suggest that the released PtII compound inhibits the proliferation of cancer cells by a DNA-damage-mediated mechanism. Simultaneously, the released oleic and cinnamic acid can effectively inhibit HER2 expression. To our knowledge, this is the first platinum-based complex inhibiting HER2 expression that does not contain protein or peptide. Moreover, this PtIV prodrug is capable of overcoming the resistance of cancer stem cells (CSCs), inducing death in both CSCs and differentiated cancer cells. Thus, the results substantiate our design strategy and demonstrate the potential of this approach for the development of new, therapeutically relevant compounds.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cinamatos/farmacologia , Complexos de Coordenação/farmacologia , Ácido Oleico/farmacologia , Platina/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Ácido Oleico/química , Platina/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
19.
Angew Chem Int Ed Engl ; 59(34): 14677-14685, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32489012

RESUMO

Monosaccharides are added to the hydrophilic face of a self-assembled asymmetric FeII metallohelix, using CuAAC chemistry. The sixteen resulting architectures are water-stable and optically pure, and exhibit improved antiproliferative selectivity against colon cancer cells (HCT116 p53+/+ ) with respect to the non-cancerous ARPE-19 cell line. While the most selective compound is a glucose-appended enantiomer, its cellular entry is not mainly glucose transporter-mediated. Glucose conjugation nevertheless increases nuclear delivery ca 2.5-fold, and a non-destructive interaction with DNA is indicated. Addition of the glucose units affects the binding orientation of the metallohelix to naked DNA, but does not substantially alter the overall affinity. In a mouse model, the glucose conjugated compound was far better tolerated, and tumour growth delays for the parent compound (2.6 d) were improved to 4.3 d; performance as good as cisplatin but with the advantage of no weight loss in the subjects.


Assuntos
Glicoconjugados/química , Metais/química , Neoplasias/patologia , Células HCT116 , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
20.
Bioorg Med Chem Lett ; 30(13): 127206, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354569

RESUMO

Four gallium(III) complexes, [Ga(ClQ)3]⋅MeOH (1 - MeOH), [Ga(ClQ)3] (1), [Ga(BrQ)3] (2), [Ga(dIQ)3] (3) and [Ga(CQ)3] (4), were prepared (H-ClQ = 5-chloro-8-quinolinol, H-BrQ = 7-bromo-8-quinolinol, H-dIQ = 5,7-diiodo-8-quinolinol, H-CQ = 5-chloro-7-iodo-8-quinolinol) and characterised by elemental analysis, IR and NMR spectroscopy. Single crystal structure analysis of 1 - MeOH confirmed that the complex has a molecular structure with gallium(III) metal ion coordinated in mer-fashion by N- and O-donor atoms of three ClQ ligands. Stability of all complexes in DMSO was proved by 1H NMR spectroscopy. The in vitro antiproliferative activity of 1 was evaluated against the A2780, MBA-MB-231 and HCT116 cell lines. Complex 1 displays higher antiproliferative activity (IC50 values in the range 2.1-6 µm) compared to the ClQ ligand and cisplatin; and a significant selective antiproliferative potency (IC50 = 136 µm, for normal MRC5pd30 cell line). Radical scavenging experiments revealed that complex 1 exhibits the highest antioxidant activity of the prepared complexes as well as the ligands.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Quinolinas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Gálio/química , Humanos , Quinolinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...