Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; 86(2): 100025, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916569

RESUMO

As essential oils (EOs) possess GRAS status, there is a strong interest in their application to food preservation. Trends in the food industry suggest consumers are drawn to environmentally friendly alternatives and less synthetic chemical preservatives. Although the use of EOs has increased over the years, adverse effects have limited their use. This review aims to address the regulatory standards for EO usage in food, techniques for delivery of EOs, essential oils commonly used to control pathogens and molds, and advances with new active compounds that overcome sensory effects for meat products, fresh fruits and vegetables, fruit and vegetable juices, seafood, dairy products, and other products. This review will show adverse sensory effects can be overcome in various products by the use of edible coatings containing encapsulated EOs to facilitate the controlled release of EOs. Depending on the method of cooking, the food product has been shown to mask flavors associated with EOs. In addition, using active packaging materials can decrease the diffusion rate of the EOs, thus controlling undesirable flavor characteristics while still preserving or prolonging the shelf life of food. The use of encapsulation in packaging film can control the release of volatile or active ingredients. Further, use of EOs in the vapor phase allows for contact indirectly, and use of nanoemulsion, coating, and film wrap allows for the controlled release of the EOs. Research has also shown that combining EOs can prevent adverse sensory effects. Essential oils continue to serve as a very beneficial way of controlling undesirable microorganisms in food systems.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Óleos Voláteis/química , Conservantes de Alimentos , Preparações de Ação Retardada , Conservação de Alimentos/métodos
2.
Microorganisms ; 8(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138184

RESUMO

High pressure processing (HPP) was evaluated to inactivate Shiga toxin-producing Escherichia coli (STEC) in raw meatballs. Ground meat (>90% lean) was inoculated (ca. 7.0 log CFU/g) with a rifampicin-resistant cocktail of eight STEC strains (O26:H11, O45:H2, O103:H2, O104:H4, O111:H-, O121:H19, O145:NM, and O157:H7). Inoculated ground beef, ground veal, or a mixture of ground beef, pork, and veal were separately mixed with liquid whole eggs and seasonings, shaped by hand into meatballs (40 g each), and stored at -20 or at 4 °C for at least 18 h. Samples were then exposed to 400 or 600 MPa for 0 to 18 min. There were no differences (p > 0.05) in pathogen reduction related to the species of meat used or for meatballs that were refrigerated (0.9 to 2.9 log CFU/g) compared to otherwise similar meatballs that were stored frozen (1.0 to 3.0 log CFU/g) prior to HPP treatment. However, less time was needed to achieve a ≥ 2.0 log CFU/g reduction at 600 MPa (1 to 3 min) compared to 400 MPa (at least 9 min). This work provides new and practically useful information on the use of HPP to inactivate STEC in raw meatballs.

3.
J Food Prot ; 79(5): 723-31, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27296418

RESUMO

We investigated the effects of deep-frying or oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs. Finely ground veal and/or a finely ground beef-pork-veal mixture were inoculated (ca. 6.5 log CFU/g) with an eight-strain, genetically marked cocktail of rifampin-resistant STEC strains (STEC-8; O111:H, O45:H2, O103:H2, O104:H4, O121:H19, O145:NM, O26:H11, and O157:H7). Inoculated meat was mixed with liquid whole eggs and seasoned bread crumbs, shaped by hand into 40-g balls, and stored at -20°C (i.e., frozen) or at 4°C (i.e., fresh) for up to 18 h. Meatballs were deep-fried (canola oil) or baked (convection oven) for up to 9 or 20 min at 176.7°C (350°F), respectively. Cooked and uncooked samples were homogenized and plated onto sorbitol MacConkey agar with rifampin (100 µg/ml) followed by incubation of plates at 37°C for ca. 24 h. Up to four trials and three replications for each treatment for each trial were conducted. Deep-frying fresh meatballs for up to 5.5 min or frozen meatballs for up to 9.0 min resulted in reductions of STEC-8 ranging from ca. 0.7 to ≥6.1 log CFU/g. Likewise, reductions of ca. 0.7 to ≥6.1 log CFU/g were observed for frozen and fresh meatballs that were oven cooked for 7.5 to 20 min. This work provides new information on the effect of prior storage temperature (refrigerated or frozen), as well as subsequent cooking via deep-frying or baking, on inactivation of STEC-8 in meatballs prepared with beef, pork, and/or veal. These results will help establish guidelines and best practices for cooking raw meatballs at both food service establishments and in the home.


Assuntos
Toxina Shiga , Escherichia coli Shiga Toxigênica , Animais , Contagem de Colônia Microbiana , Culinária , Escherichia coli O157 , Manipulação de Alimentos , Microbiologia de Alimentos , Humanos , Carne , Carne Vermelha , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA