Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(9): 091303, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655239

RESUMO

The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

2.
Phys Rev Lett ; 107(5): 051301, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867059

RESUMO

We report results of a search for light (≲10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42) cm(2), for a dark matter particle mass m(χ)=7 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.


Assuntos
Radiação Cósmica , Interpretação Estatística de Dados , Elétrons , Física Nuclear , Humanos , Luz , Fótons , Espalhamento de Radiação
3.
Phys Rev Lett ; 101(9): 091301, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18851599

RESUMO

XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.

4.
Phys Rev Lett ; 100(2): 021303, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18232850

RESUMO

The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to 4.5 keV nuclear-recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006, and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross section of 8.8x10(-44) cm2 for a WIMP mass of 100 GeV/c2, and 4.5x10(-44) cm2 for a WIMP mass of 30 GeV/c2. This result further constrains predictions of supersymmetric models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...