Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2314083121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427599

RESUMO

In a stack of atomically thin van der Waals layers, introducing interlayer twist creates a moiré superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult; hence, determining that twist angle and mapping its spatial variation is very important. Techniques have emerged to do this by imaging the moiré, but most of these require sophisticated infrastructure, time-consuming sample preparation beyond stack synthesis, or both. In this work, we show that torsional force microscopy (TFM), a scanning probe technique sensitive to dynamic friction, can reveal surface and shallow subsurface structure of van der Waals stacks on multiple length scales: the moirés formed between bi-layers of graphene and between graphene and hexagonal boron nitride (hBN) and also the atomic crystal lattices of graphene and hBN. In TFM, torsional motion of an Atomic Force Microscope (AFM) cantilever is monitored as it is actively driven at a torsional resonance while a feedback loop maintains contact at a set force with the sample surface. TFM works at room temperature in air, with no need for an electrical bias between the tip and the sample, making it applicable to a wide array of samples. It should enable determination of precise structural information including twist angles and strain in moiré superlattices and crystallographic orientation of van der Waals flakes to support predictable moiré heterostructure fabrication.

2.
Nano Lett ; 23(23): 10802-10810, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029283

RESUMO

Quantum coherence of electrons can produce striking behaviors in mesoscopic conductors. Although magnetic order can also strongly affect transport, the combination of coherence and magnetic order has been largely unexplored. Here, we examine quantum coherence-driven universal conductance fluctuations in the antiferromagnetic, canted antiferromagnetic, and ferromagnetic phases of a thin film of the topological material MnBi2Te4. In each magnetic phase, we extract a charge carrier phase coherence length of about 100 nm. The conductance magnetofingerprint is repeatable when sweeping applied magnetic field within one magnetic phase. Surprisingly, in the antiferromagnetic and canted antiferromagnetic phases, but not in the ferromagnetic phase, the magnetofingerprint depends on the direction of the field sweep. To explain our observations, we suggest that conductance fluctuation measurements are sensitive to the motion and nucleation of magnetic domain walls in MnBi2Te4.

3.
Nano Lett ; 22(1): 238-245, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978444

RESUMO

The flat bands resulting from moiré superlattices exhibit fascinating correlated electron phenomena such as correlated insulators, ( Nature 2018, 556 (7699), 80-84), ( Nature Physics 2019, 15 (3), 237) superconductivity, ( Nature 2018, 556 (7699), 43-50), ( Nature 2019, 572 (7768), 215-219) and orbital magnetism. ( Science 2019, 365 (6453), 605-608), ( Nature 2020, 579 (7797), 56-61), ( Science 2020, 367 (6480), 900-903) Such magnetism has been observed only at particular integer multiples of n0, the density corresponding to one electron per moiré superlattice unit cell. Here, we report the experimental observation of ferromagnetism at noninteger filling (NIF) of a flat Chern band in a ABC-TLG/hBN moiré superlattice. This state exhibits prominent ferromagnetic hysteresis behavior with large anomalous Hall resistivity in a broad region of densities centered in the valence miniband at n = -2.3n0. We observe that, not only the magnitude of the anomalous Hall signal, but also the sign of the hysteretic ferromagnetic response can be modulated by tuning the carrier density and displacement field. Rotating the sample in a fixed magnetic field demonstrates that the ferromagnetism is highly anisotropic and likely purely orbital in character.

4.
Nano Lett ; 21(10): 4299-4304, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33970644

RESUMO

We have previously reported ferromagnetism evinced by a large hysteretic anomalous Hall effect in twisted bilayer graphene (tBLG). Subsequent measurements of a quantized Hall resistance and small longitudinal resistance confirmed that this magnetic state is a Chern insulator. Here, we report that when tilting the sample in an external magnetic field, the ferromagnetism is highly anisotropic. Because spin-orbit coupling is weak in graphene, such anisotropy is unlikely to come from spin but rather favors theories in which the ferromagnetism is orbital. We know of no other case in which ferromagnetism has a purely orbital origin. For an applied in-plane field larger than 5 T, the out-of-plane magnetization is destroyed, suggesting a transition to a new phase.

5.
Proc Natl Acad Sci U S A ; 113(44): 12386-12390, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791162

RESUMO

Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current-tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.

6.
Nano Lett ; 15(7): 4401-5, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26044997

RESUMO

Colloidal quantum dot arrays with long organic ligands have better packing order than those with short ligands but are highly resistive, making low-bias conductance measurements impossible with conventional two-probe techniques. We use an integrated charge sensor to study transport in weakly coupled arrays in the low-bias regime, and we nanopattern the arrays to minimize packing disorder. We present the temperature and field dependence of the resistance for nanopatterned oleic-acid and n-butylamine-capped PbS arrays, measuring resistances as high as 10(18) Ω. We find that the conduction mechanism changes from nearest neighbor hopping in oleic-acid-capped PbS dots to Mott's variable range hopping in n-butylamine capped PbS dots. Our results can be understood in terms of a change in the interdot coupling strength or a change in density of trap states and highlight the importance of the capping ligand on charge transport through colloidal quantum dot arrays.

7.
Nano Lett ; 12(8): 4404-8, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22784104

RESUMO

We present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals unimpeded by defects such as cracking and clustering that typically exist in larger-scale films. We find that the electrical conductivity of the nanoscale films is 180 times higher than that of drop-cast, microscopic films made of the same type of nanocrystal. Our technique for forming the nanoscale films is based on electron-beam lithography and a lift-off process. The patterns have dimensions as small as 30 nm and are positioned on a surface with 30 nm precision. The method is flexible in the choice of nanocrystal core-shell materials and ligands. We demonstrate patterns with PbS, PbSe, and CdSe cores and Zn(0.5)Cd(0.5)Se-Zn(0.5)Cd(0.5)S core-shell nanocrystals with a variety of ligands. We achieve unprecedented versatility in integrating semiconductor nanocrystal films into device structures both for studying the intrinsic electrical properties of the nanocrystals and for nanoscale optoelectronic applications.

8.
Nano Lett ; 11(10): 4102-6, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21899339

RESUMO

Contact effects are a common impediment to electrical measurements throughout the fields of nanoelectronics, organic electronics, and the emerging field of graphene electronics. We demonstrate a novel method of measuring electrical conductance in a thin film of amorphous germanium that is insensitive to contact effects. The measurement is based on the capacitive coupling of a nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET) to the thin film so that the MOSFET senses charge diffusion in the film. We tune the contact resistance between the film and contact electrodes and show that our measurement is unaffected. With the MOSFET, we measure the temperature and field dependence of the conductance of the amorphous germanium, which are fit to a model of variable-range hopping. The device structure enables both a contact-independent and a conventional, contact-dependent measurement, which makes it possible to discern the effect of the contacts in the latter measurement. This measurement method can be used for reliable electrical characterization of new materials and to determine the effect of contacts on conventional electron transport measurements, thus guiding the choice of optimal contact materials.

9.
Nano Lett ; 11(1): 30-4, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21155560

RESUMO

We investigate the effect of electrostatic screening on a nanoscale silicon MOSFET electrometer. We find that screening by the lightly doped p-type substrate, on which the MOSFET is fabricated, significantly affects the sensitivity of the device. We are able to tune the rate and magnitude of the screening effect by varying the temperature and the voltages applied to the device, respectively. We show that despite this screening effect, the electrometer is still very sensitive to its electrostatic environment, even at room temperature.

10.
Nano Lett ; 10(3): 1037-40, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20178356

RESUMO

We measure charge transport in a hydrogenated amorphous silicon (a-Si:H) thin film using a nanometer scale silicon MOSFET as a charge sensor. This charge detection technique makes possible the measurement of extremely large resistances even in the presence of blocking contacts. At high temperatures, where the resistance of the a-Si:H is not too large, the charge detection measurement agrees with a direct measurement of current. The device geometry allows us to probe both the field effect and dispersive transport in the a-Si:H using charge sensing and to extract the density of states near the Fermi energy.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Nanotecnologia/instrumentação , Transistores Eletrônicos , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...