Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 626(8001): 1133-1140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326618

RESUMO

Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.


Assuntos
Exorribonucleases , Proteínas Ribossômicas , Ribossomos , Exorribonucleases/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Cinética , Sítios de Ligação
2.
J Biol Chem ; 299(9): 105129, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37543363

RESUMO

Puromycin and its derivative O-propargyl puromycin (OPP) have recently found widespread use in detecting nascent proteins. Use of these metabolic labels in complex mixtures of cells leads to indiscriminate tagging of nascent proteomes independent of cell type. Here, we show how a widely used mammalian selection marker, puromycin N-acetyltransferase, can be repurposed for cell-specific metabolic labeling. This approach, which we named puromycin inactivation for cell-selective proteome labeling (PICSL), is based on efficient inactivation of puromycin or OPP in cells expressing puromycin N-acetyltransferase and detection of translation in other cell types. Using cocultures of neurons and glial cells from the rat brain cortex, we show the application of PICSL for puromycin immunostaining, Western blot, and mass spectrometric identification of nascent proteins. By combining PICSL and OPP-mediated proteomics, cell type-enriched proteins can be identified based on reduced OPP labeling in the cell type of interest.

3.
Pharmaceutics ; 15(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242727

RESUMO

Immune checkpoint inhibitors are increasingly used in combination with chemotherapy for the treatment of non-small cell lung cancer, yet the success of combination therapies is relatively limited. Thus, more detailed insight regarding the tumor molecular markers that may affect the responsiveness of patients to therapy is required. Here, we set out to explore the proteome of two lung adenocarcinoma cell lines (HCC-44 and A549) treated with cisplatin, pemetrexed, durvalumab, and the corresponding mixtures to establish the differences in post-treatment protein expression that can serve as markers of chemosensitivity or resistance. The mass spectrometry study showed that the addition of durvalumab to the treatment mixture resulted in cell line- and chemotherapeutic agent-dependent responses and confirmed the previously reported involvement of DNA repair machinery in the potentiation of the chemotherapy effect. Further validation using immunofluorescence also indicated that the potentiating effect of durvalumab in the case of cisplatin treatment was dependent on the tumor suppressor RB-1 in the PD-L1 weakly positive cells. In addition, we identified aldehyde dehydrogenase ALDH1A3 as the general putative resistance marker. Further studies in patient biopsy samples will be required to confirm the clinical significance of these findings.

4.
Nucleic Acids Res ; 50(21): 12515-12526, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36370110

RESUMO

In Escherichia coli, the heat shock protein 15 (Hsp15) is part of the cellular response to elevated temperature. Hsp15 interacts with peptidyl-tRNA-50S complexes that arise upon dissociation of translating 70S ribosomes, and is proposed to facilitate their rescue and recycling. A previous structure of E. coli Hsp15 in complex with peptidyl-tRNA-50S complex reported a binding site located at the central protuberance of the 50S subunit. By contrast, recent structures of RqcP, the Hsp15 homolog in Bacillus subtilis, in complex with peptidyl-tRNA-50S complexes have revealed a distinct site positioned between the anticodon-stem-loop (ASL) of the P-site tRNA and H69 of the 23S rRNA. Here we demonstrate that exposure of E. coli cells to heat shock leads to a decrease in 70S ribosomes and accumulation of 50S subunits, thus identifying a natural substrate for Hsp15 binding. Additionally, we have determined a cryo-EM reconstruction of the Hsp15-50S-peptidyl-tRNA complex isolated from heat shocked E. coli cells, revealing that Hsp15 binds to the 50S-peptidyl-tRNA complex analogously to its B. subtilis homolog RqcP. Collectively, our findings support a model where Hsp15 stabilizes the peptidyl-tRNA in the P-site and thereby promotes access to the A-site for putative rescue factors to release the aberrant nascent polypeptide chain.


Assuntos
Escherichia coli , Proteínas de Choque Térmico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Ribossomos/metabolismo , RNA Ribossômico 23S/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo
5.
Nat Commun ; 13(1): 2819, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595797

RESUMO

Saccharomyces cerevisiae is a widely used cell factory; therefore, it is important to understand how it organizes key functional parts when cultured under different conditions. Here, we perform a multiomics analysis of S. cerevisiae by culturing the strain with a wide range of specific growth rates using glucose as the sole limiting nutrient. Under these different conditions, we measure the absolute transcriptome, the absolute proteome, the phosphoproteome, and the metabolome. Most functional protein groups show a linear dependence on the specific growth rate. Proteins engaged in translation show a perfect linear increase with the specific growth rate, while glycolysis and chaperone proteins show a linear decrease under respiratory conditions. Glycolytic enzymes and chaperones, however, show decreased phosphorylation with increasing specific growth rates; at the same time, an overall increased flux through these pathways is observed. Further analysis show that even though mRNA levels do not correlate with protein levels for all individual genes, the transcriptome level of functional groups correlates very well with its corresponding proteome. Finally, using enzyme-constrained genome-scale modeling, we find that enzyme usage plays an important role in controlling flux in amino acid biosynthesis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Glucose/metabolismo , Glicólise/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Hum Reprod ; 36(8): 2230-2248, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34270712

RESUMO

STUDY QUESTION: Can a combination of the focussed protein kinase assays and a wide-scale proteomic screen pinpoint novel, clinically relevant players in decidualization in vitro and in vivo? SUMMARY ANSWER: Rho-dependent protein kinase (ROCK) activity is elevated in response to the combined treatment with progesterone and 8-Br-cAMP during in vitro decidualization, mirrored by increase of ROCK2 mRNA and protein levels and the phosphorylation levels of its downstream target Cofilin-1 (CFL1) in secretory versus proliferative endometrium. WHAT IS KNOWN ALREADY: Decidualization is associated with extensive changes in gene expression profile, proliferation, metabolism and morphology of endometrium, yet only a few underlying molecular pathways have been systematically explored. In vitro decidualization of endometrial stromal cells (ESCs) can be reportedly induced using multiple protocols with variable physiological relevance. In our previous studies, cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA)/prolactin axis that is classically upregulated during decidualization showed dampened activation in ESCs isolated from polycystic ovary syndrome (PCOS) patients as compared to controls. STUDY DESIGN, SIZE, DURATION: In vitro decidualization studies were carried out in passage 2 ESCs isolated from controls (N = 15) and PCOS patients (N = 9). In parallel, lysates of non-cultured ESCs isolated from proliferative (N = 4) or secretory (N = 4) endometrial tissue were explored. The observed trends were confirmed using cryo-cut samples of proliferative (N = 3) or secretory endometrium (N = 3), and in proliferative or secretory full tissue samples from controls (N = 8 and N = 9, respectively) or PCOS patients (N = 10 for both phases). PARTICIPANTS/MATERIALS, SETTING, METHODS: The activities of four target kinases were explored using kinase-responsive probes and selective inhibitors in lysates of in vitro decidualized ESCs and non-cultured ESCs isolated from tissue at different phases of the menstrual cycle. In the latter lysates, wide-scale proteomic and phosphoproteomic studies were further carried out. ROCK2 mRNA expression was explored in full tissue samples from controls or PCOS patients. The immunofluorescent staining of phosphorylated CFL1 was performed in full endometrial tissue samples, and in the in vitro decidualized fixed ESCs from controls or PCOS patients. Finally, the cellular migration properties were explored in live in vitro decidualized ESCs. MAIN RESULTS AND THE ROLE OF CHANCE: During in vitro decidualization, the activities of PKA, protein kinase B (Akt/PKB), and ROCK are increased while the activity of casein kinase 2 (CK2) is decreased; these initial trends are observable after 4-day treatment (P < 0.05) and are further augmented following the 9-day treatment (P < 0.001) with mixtures containing progesterone and 8-Br-cAMP or forskolin. The presence of progesterone is necessary for activation of ROCK, yet it is dispensable in the case of PKA and Akt/PKB; in comparison to controls, PCOS patient-derived ESCs feature dampened response to progesterone. In non-cultured ESCs isolated from secretory vs proliferative phase tissue, only activity of ROCK is increased (P < 0.01). ROCK2 protein levels are slightly elevated in secretory versus proliferative ESCs (relative mean standard deviation < 50%), and ROCK2 mRNA is elevated in mid-secretory versus proliferative full tissue samples (P < 0.05) obtained from controls but not PCOS patients. Activation of ROCK2 downstream signalling results in increase of phospho-S3 CFL1 in secretory endometrium (P < 0.001) as well as in vitro decidualized ESCs (P < 0.01) from controls but not PCOS patients. ROCK2-triggered alterations in the cytoskeleton are reflected by the significantly decreased motility of in vitro decidualized ESCs (P < 0.05). LARGE SCALE DATA: Proteomic and phosphoproteomic data are available via ProteomeXchange with identifier PXD026243. LIMITATIONS, REASONS FOR CAUTION: The number of biological samples was limited. The duration of protocol for isolation of non-cultured ESCs from tissue can potentially affect phosphorylation pathways in cells, yet the possible artefacts were minimized by the identical treatment of proliferative and secretory samples. WIDER IMPLICATIONS OF THE FINDINGS: The study demonstrated the benefits of combining the focussed kinase activity assay with wide-scale phosphoproteomics and showed the need for detailed elaboration of the in vitro decidualization protocols. ROCK was identified as the novel target of interest in decidualization, which requires closer attention in further studies-including the context of decidualization-related subfertility and infertility. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the Estonian Ministry of Education and Research, and the Estonian Research Council (PRG1076, PRG454, PSG230 and PSG608), Enterprise Estonia (EU48695), Horizon 2020 innovation grant (ERIN, Grant no. EU952516) of the European Commission, the COMBIVET ERA Chair, H2020-WIDESPREAD-2018-04 (Grant agreement no. 857418), the Academy of Finland (Project grants 315921 and 321763), the Finnish Medical Foundation and The Sigrid Juselius Foundation. The authors confirm that they have no conflict of interest with respect to the content of this article.


Assuntos
Progesterona , Quinases Associadas a rho , Fatores de Despolimerização de Actina , Endométrio , Feminino , Humanos , Proteômica , Células Estromais , Quinases Associadas a rho/genética
8.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790014

RESUMO

The Gcn pathway is conserved in all eukaryotes, including mammals such as humans, where it is a crucial part of the integrated stress response (ISR). Gcn1 serves as an essential effector protein for the kinase Gcn2, which in turn is activated by stalled ribosomes, leading to phosphorylation of eIF2 and a subsequent global repression of translation. The fine-tuning of this adaptive response is performed by the Rbg2/Gir2 complex, a negative regulator of Gcn2. Despite the wealth of available biochemical data, information on structures of Gcn proteins on the ribosome has remained elusive. Here we present a cryo-electron microscopy structure of the yeast Gcn1 protein in complex with stalled and colliding 80S ribosomes. Gcn1 interacts with both 80S ribosomes within the disome, such that the Gcn1 HEAT repeats span from the P-stalk region on the colliding ribosome to the P-stalk and the A-site region of the lead ribosome. The lead ribosome is stalled in a nonrotated state with peptidyl-tRNA in the A-site, uncharged tRNA in the P-site, eIF5A in the E-site, and Rbg2/Gir2 in the A-site factor binding region. By contrast, the colliding ribosome adopts a rotated state with peptidyl-tRNA in a hybrid A/P-site, uncharged-tRNA in the P/E-site, and Mbf1 bound adjacent to the mRNA entry channel on the 40S subunit. Collectively, our findings reveal the interaction mode of the Gcn2-activating protein Gcn1 with colliding ribosomes and provide insight into the regulation of Gcn2 activation. The binding of Gcn1 to a disome has important implications not only for the Gcn2-activated ISR, but also for the general ribosome-associated quality control pathways.


Assuntos
Fatores de Alongamento de Peptídeos/química , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Proteínas de Transporte/metabolismo , Simulação de Dinâmica Molecular , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico
9.
Proteomics ; 21(6): e2000093, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33452728

RESUMO

Protein quantification via label-free mass spectrometry (MS) has become an increasingly popular method for predicting genome-wide absolute protein abundances. A known caveat of this approach, however, is the poor technical reproducibility, that is, how consistent predictions are when the same sample is measured repeatedly. Here, we measured proteomics data for Saccharomyces cerevisiae with both biological and inter-batch technical triplicates, to analyze both accuracy and precision of protein quantification via MS. Moreover, we analyzed how these metrics vary when applying different methods for converting MS intensities to absolute protein abundances. We demonstrate that our simple normalization and rescaling approach can perform as accurately, yet more precisely, than methods which rely on external standards. Additionally, we show that inter-batch reproducibility is worse than biological reproducibility for all evaluated methods. These results offer a new benchmark for assessing MS data quality for protein quantification, while also underscoring current limitations in this approach.


Assuntos
Benchmarking , Saccharomyces cerevisiae , Proteoma , Proteômica , Reprodutibilidade dos Testes
10.
Mol Cell ; 81(1): 115-126.e7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33259810

RESUMO

In all branches of life, stalled translation intermediates are recognized and processed by ribosome-associated quality control (RQC) pathways. RQC begins with the splitting of stalled ribosomes, leaving an unfinished polypeptide still attached to the large subunit. Ancient and conserved NEMF family RQC proteins target these incomplete proteins for degradation by the addition of C-terminal "tails." How such tailing can occur without the regular suite of translational components is, however, unclear. Using single-particle cryo-electron microscopy (EM) of native complexes, we show that C-terminal tailing in Bacillus subtilis is mediated by NEMF protein RqcH in concert with RqcP, an Hsp15 family protein. Our structures reveal how these factors mediate tRNA movement across the ribosomal 50S subunit to synthesize polypeptides in the absence of mRNA or the small subunit.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura
11.
Appl Microbiol Biotechnol ; 104(20): 8871-8885, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32875365

RESUMO

Gluten is a cereal protein that is incompletely digested by human proteolytic enzymes that create immunogenic peptides that accumulate in the gastrointestinal tract (GIT). Although both environmental and human bacteria have been shown to expedite gluten hydrolysis, gluten intolerance is a growing concern. Here we hypothesize that together with food, we acquire environmental bacteria that could impact our GIT with gluten-degrading bacteria. Using in vitro gastrointestinal simulation conditions, we evaluated the capacity of endophytic bacteria that inhabit root vegetables, potato (Solanum tuberosum), carrot (Daucus sativus), beet (Beta vulgaris), and topinambur (Jerusalem artichoke) (Helianthus tuberosus), to resist these conditions and degrade gluten. By 16S rDNA sequencing, we discovered that bacteria from the families Enterobacteriaceae, Bacillaceae, and Clostridiaceae most effectively multiply in conditions similar to the human GIT (microoxic conditions, 37 °C) while utilizing vegetable material and gluten as nutrients. Additionally, we used stomach simulation (1 h, pH 3) and intestinal simulation (1 h, bile salts 0.4%) treatments. The bacteria that survived this treatment retained the ability to degrade gluten epitopes but at lower levels. Four bacterial strains belonging to species Bacillus pumilus, Clostridium subterminale, and Clostridium sporogenes isolated from vegetable roots produced proteases with postproline cleaving activity that successfully neutralized the toxic immunogenic epitopes. KEY POINTS: • Bacteria from root vegetables can degrade gluten. • Some of these bacteria can resist conditions mimicking gastrointestinal tract.


Assuntos
Doença Celíaca , Helianthus , Microbiota , Bactérias/genética , Clostridium , Gliadina , Glutens , Humanos , Verduras
12.
Proc Natl Acad Sci U S A ; 117(14): 7575-7583, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213592

RESUMO

For cells to replicate, a sufficient supply of biosynthetic precursors is needed, necessitating the concerted action of metabolism and protein synthesis during progressive phases of cell division. A global understanding of which biosynthetic processes are involved and how they are temporally regulated during replication is, however, currently lacking. Here, quantitative multiomics analysis is used to generate a holistic view of the eukaryal cell cycle, using the budding yeast Saccharomyces cerevisiae Protein synthesis and central carbon pathways such as glycolysis and amino acid metabolism are shown to synchronize their respective abundance profiles with division, with pathway-specific changes in metabolite abundance also being reflected by a relative increase in mitochondrial volume, as shown by quantitative fluorescence microscopy. These results show biosynthetic precursor production to be temporally regulated to meet phase-specific demands of eukaryal cell division.


Assuntos
Ciclo Celular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Genômica , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética
13.
Sci Rep ; 10(1): 2300, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042028

RESUMO

MicroRNAs (miRNAs) are known post-transcriptional regulators of various biological processes including ovarian follicle development. We have previously identified miRNAs from human pre-ovulatory ovarian granulosa cells that are expressed from the intronic regions of two key genes in normal follicular development: FSH receptor (FSHR) and CYP19A1, the latter encoding the aromatase enzyme. The present study aims to identify the target genes regulated by these miRNAs: hsa-miR-548ba and hsa-miR-7973, respectively. The miRNAs of interest were transfected into KGN cell line and the gene expression changes were analyzed by Affymetrix microarray. Potential miRNA-regulated genes were further filtered by bioinformatic target prediction algorithms and validated for direct miRNA:mRNA binding by luciferase reporter assay. LIFR, PTEN, NEO1 and SP110 were confirmed as targets for hsa-miR-548ba. Hsa-miR-7973 target genes ADAM19, PXDN and FMNL3 also passed all verification steps. Additionally, the expression pattern of the miRNAs was studied in human primary cumulus granulosa cell culture in relation to the expression of their host genes and FSH stimulation. Based on our findings we propose the involvement of hsa-miR-548ba in the regulation of follicle growth and activation via LIFR and PTEN. Hsa-miR-7973 may be implicated in the modulation of extracellular matrix and cell-cell interactions by regulating the expression of its identified targets.


Assuntos
Células do Cúmulo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Adulto , Aromatase/genética , Linhagem Celular Tumoral , Feminino , Hormônio Foliculoestimulante/metabolismo , Perfilação da Expressão Gênica , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Folículo Ovariano/citologia , PTEN Fosfo-Hidrolase/genética , Cultura Primária de Células , Receptores do FSH/genética , Adulto Jovem
14.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31512719

RESUMO

CONTEXT: Clinically used endometrial (EM) receptivity assays are based on transcriptomic patterning of biopsies at midsecretory endometrium (MSE) to identify the possible displacement or disruption of window of implantation (WOI) in patients with recurrent implantation failure (RIF). However, biopsies are invasive and cannot be performed in the same cycle with in vitro fertilization embryo transfer, while uterine fluid (UF) analysis is considered minimally invasive and can immediately precede embryo transfer. OBJECTIVE: To determine whether UF proteome can be used for WOI monitoring and whether it would highlight the etiology of RIF. PATIENTS: Paired early secretory endometrial (ESE) and MSE UF samples from six fertile control women for discovery, and an additional 11 paired ESE/MSE samples from controls and 29 MSE samples from RIF patients for validation. RESULTS: Using discovery mass spectrometry (MS) proteomics we detected 3158 proteins from secretory phase UF of which 367 undergo significant (q < 0.05) proteomic changes while transitioning from ESE to MSE. Forty-five proteins were further validated with targeted MS, and 21 were found to display similar levels between control ESE and RIF MSE, indicating displacement of the WOI. A panel of PGR, NNMT, SLC26A2 and LCN2 demonstrated specificity and sensitivity of 91.7% for distinguishing MSE from ESE samples. The same panel distinguished control MSE samples from RIF MSE with a 91.7% specificity and 96.6% sensitivity. CONCLUSION: UF proteins can be used for estimating uterine receptivity with minimal invasiveness. Women with RIF appear to have altered MSE UF profiles that may contribute to their low IVF success rate.


Assuntos
Biomarcadores/metabolismo , Líquidos Corporais/metabolismo , Implantação do Embrião/fisiologia , Endométrio/fisiologia , Proteoma/metabolismo , Útero/metabolismo , Adulto , Biomarcadores/análise , Estudos de Casos e Controles , Estudos de Coortes , Transferência Embrionária , Feminino , Fertilização in vitro , Seguimentos , Humanos , Proteoma/análise
15.
PLoS One ; 14(11): e0225775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770404

RESUMO

The Sonic Hedgehog (Shh) signalling pathway plays multiple roles during embryonic development and under pathological conditions. Although the core components of the Shh pathway are conserved, the regulation of signal transduction varies significantly among species and cell types. Protein kinases Ulk3 and Pka are involved in the Shh pathway as modulators of the activities of Gli transcription factors, which are the nuclear mediators of the signal. Here, we investigate the regulation and activities of two GLI1 isoforms, full-length GLI1 (GLI1FL) and GLI1ΔN. The latter protein lacks the first 128 amino acids including the conserved phosphorylation cluster and the binding motif for SUFU, the key regulator of GLI activity. Both GLI1 isoforms are co-expressed in all human cell lines analysed and possess similar DNA binding activity. ULK3 potentiates the transcriptional activity of both GLI1 proteins, whereas PKA inhibits the activity of GLI1ΔN, but not GLI1FL. In addition to its well-established role as a transcriptional activator, GLI1FL acts as a repressor by inhibiting transcription from the early promoters of human papillomavirus type 18 (HPV18). Additionally, compared to GLI1ΔN, GLI1FL is a more potent suppressor of replication of several HPV types. Altogether, our data show that the N-terminal part of GLI1FL is crucial for the realization of its full potential as a transcriptional regulator.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Papillomaviridae/fisiologia , Proteínas Repressoras/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , DNA/metabolismo , Humanos , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/química , Alinhamento de Sequência , Ativação Transcricional , Replicação Viral , Proteína GLI1 em Dedos de Zinco/química , Proteína GLI1 em Dedos de Zinco/genética
16.
J Bacteriol ; 201(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31182498

RESUMO

TonB-ExbB-ExbD-like energy transduction systems are widespread among Gram-negative bacteria. While most species have only one copy of tonB-exbBD genes, the Pseudomonas species possess more TonB-ExbBD homologues. One of them, the TonB3-PocA-PocB complex, was recently shown to be required for polar localization of FlhF and, thus, the flagella in Pseudomonas aeruginosa Here, we show that the orthologous TonBm-PocA-PocB complex is important for polar localization of FlhF and flagella in Pseudomonas putida as well. Additionally, the system is necessary for maintaining membrane integrity, as the inactivation of the TonBm-PocAB complex results in increased membrane permeability, lowered stress tolerance, and conditional cell lysis. Interestingly, the functionality of TonBm-PocAB complex is more important for stationary than for exponentially growing bacteria. The whole-cell proteome analysis provided a likely explanation for this growth phase dependence, as extensive reprogramming was disclosed in an exponentially growing tonBm deletion strain, while only a few proteomic changes, mostly downregulation of outer membrane proteins, were determined in the stationary-phase ΔtonBm strain. We propose that this response in exponential phase, involving, inter alia, activation of AlgU and ColR regulons, can compensate for TonBm-PocAB's deficiency, while stationary-phase cells are unable to alleviate the lack of TonBm-PocAB. Our results suggest that mislocalization of flagella does not cause the membrane integrity problems; rather, the impaired membrane intactness of the TonBm-PocAB-deficient strain could be the reason for the random placement of flagella.IMPORTANCE The ubiquitous Pseudomonas species are well adapted to survive in a wide variety of environments. Their success relies on their versatile metabolic, signaling, and transport ability but also on their high intrinsic tolerance to various stress factors. This is why the study of the stress-surviving mechanisms of Pseudomonas species is of utmost importance. The stress tolerance of Pseudomonads is mainly achieved through the high barrier property of their membranes. Here, we present evidence that the TonB-ExbBD-like TonBm-PocAB system is involved in maintaining the membrane homeostasis of Pseudomonas putida, and its deficiency leads to lowered stress tolerance and conditional cell lysis.


Assuntos
Membrana Celular/fisiologia , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteômica , Pseudomonas putida/fisiologia , Proteínas de Bactérias/metabolismo , Sequência Conservada , DNA Bacteriano/genética , Regulação para Baixo , Flagelos/genética , Proteínas de Membrana/metabolismo , Pseudomonas putida/genética
17.
Biochimie ; 156: 79-91, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315853

RESUMO

MazEF and MqsRA are toxin-antitoxin systems, where the toxins MazF and MqsR sequence-specifically cleave single-stranded RNA, thereby shutting down protein synthesis and cell growth. However, it has been proposed that MazF functions in a highly specific pathway, where it truncates the 5' ends of a set of E. coli transcripts (the MazF regulon), which are then translated under stress conditions by specialized ribosomes. We mapped the cleavage sites of MazF and MqsR throughout the E. coli transcriptome. Our results show that both toxins cleave mRNA independently of the recognition site position and MazF freely cleaves transcripts of the proposed MazF regulon within coding sequences. Proteome analysis indicated that MazF expression leads to overall inhibition of protein synthesis and the putative MazF regulon proteins are not selectively synthesized in response to the toxin. Our results support a simpler role for endoribonuclease TA systems as indifferent destroyers of unstructured RNA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Estabilidade de RNA/fisiologia , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/genética , Endorribonucleases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética , RNA Mensageiro/genética
18.
Oxid Med Cell Longev ; 2018: 3175313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584460

RESUMO

Wfs1 deficiency leads to a progressive loss of plasma insulin concentration, which should reduce the consumption of glucose in insulin-dependent tissues, causing a variety of changes in intracellular energy metabolism. Our objective here was to assess the changes in the amount and function of mitochondrial proteins in different muscles of Wfs1-deficient mice. Mitochondrial functions were assayed by high-resolution oxygraphy of permeabilized muscle fibers; the protein amount was evaluated by liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis and mRNA levels of the uncoupler proteins UCP2 and UCP3 by real-time PCR; and citrate synthase (CS) activity was determined spectrophotometrically in muscle homogenates. Compared to controls, there were no changes in proton leak and citrate synthase activity in the heart and m. soleus tissues of Wfs1-deficient mice, but significantly higher levels of both of these factors were observed in the m. rectus femoris; mitochondrial proteins and mRNA of UCP2 were also higher in the m. rectus femoris. ADP-stimulated state 3 respiration was lower in the m. soleus, remained unchanged in the heart, and was higher in the m. rectus femoris. The mitochondrial protein amount and activity are higher in Wfs1-deficient mice, as are mitochondrial proton leak and oxygen consumption in m. rectus femoris. These changes in muscle metabolism may be important for identifying the mechanisms responsible for Wolfram syndrome and diabetes.


Assuntos
Metabolismo Energético/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Quadríceps/metabolismo , Animais , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Metabolismo Energético/genética , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
19.
Data Brief ; 21: 616-619, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30377649

RESUMO

The data presented in this article are related to the research article entitled "Increased Mitochondrial Protein Levels and Bioenergetics in the musculus rectus femoris of Wfs1-Deficient mice" (Eimre et al., accepted for publication). This dataset reports the analysis of Wfs1-deficient mouse heart, musculus soleus, and white part of musculus rectus femoris by liquid chromatography/tandem mass spectrometry. Label-free quantitative analysis of the mass spectrometry data identified 4056 proteins, with 114, 212, and 1290 proteins differentially expressed (t-test; p < 0.05) in the heart, m. soleus, and m. rectus femoris, respectively, between the Wfs1-deficient and wild-type groups. Eight proteins were found to be differentially expressed in all mentioned muscles, with 1 protein differently expressed in oxidative (m. soleus and heart) and 88 in skeletal muscles. This dataset supports the cited study and can be used to extend additional analyses. Data are available via ProteomeXchange with identifier PXD011019.

20.
Virulence ; 9(1): 1205-1223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30088437

RESUMO

Naturally competent bacteria acquire DNA from their surroundings to survive in nutrient-poor environments and incorporate DNA into their genomes as new genes for improved survival. The secretin HofQ from the oral pathogen Aggregatibacter actinomycetemcomitans has been associated with DNA uptake. Cytokine sequestering is a potential virulence mechanism in various bacteria and may modulate both host defense and bacterial physiology. The objective of this study was to elucidate a possible connection between natural competence and cytokine uptake in A. actinomycetemcomitans. The extramembranous domain of HofQ (emHofQ) was shown to interact with various cytokines, of which IL-8 exhibited the strongest interaction. The dissociation constant between emHofQ and IL-8 was 43 nM in static settings and 2.4 µM in dynamic settings. The moderate binding affinity is consistent with the hypothesis that emHofQ recognizes cytokines before transporting them into the cells. The interaction site was identified via crosslinking and mutational analysis. By structural comparison, relateda type I KH domain with a similar interaction site was detected in the Neisseria meningitidis secretin PilQ, which has been shown to participate in IL-8 uptake. Deletion of hofQ from the A. actinomycetemcomitans genome decreased the overall biofilm formation of this organism, abolished the response to cytokines, i.e., decreased eDNA levels in the presence of cytokines, and increased the susceptibility of the biofilm to tested ß-lactams. Moreover, we showed that recombinant IL-8 interacted with DNA. These results can be used in further studies on the specific role of cytokine uptake in bacterial virulence without interfering with natural-competence-related DNA uptake.


Assuntos
Aggregatibacter actinomycetemcomitans/química , Proteínas de Bactérias/genética , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interleucina-8/metabolismo , Secretina/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/patogenicidade , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/imunologia , Biofilmes/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Humanos , Interleucina-8/imunologia , Periodontite/imunologia , Periodontite/microbiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Secretina/imunologia , Virulência , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...